\(B=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2015^2}\)
Chứng minh B<\(\frac{1003}{2008}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{2015^2}\)
\(\Leftrightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2014.2025}\)
\(\Leftrightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2014.2015}\)
\(\Leftrightarrow B< 1-\frac{1}{2015}< 1\)
\(\Leftrightarrow B< 1\rightarrowđpcm\)
Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\)
+ Xét : \(\frac{1}{1\cdot2}>\frac{1}{2^2}\)
\(\frac{1}{2\cdot3}>\frac{1}{3^2}\)
\(\frac{1}{3\cdot4}>\frac{1}{4^2}\)
...
\(\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(A=1-\frac{1}{2015}< 1\)
\(\Rightarrow B< A< 1\left(đpcm\right)\)
Lời giải:
Ta có:
\(f(x)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)
\(f(x)=\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^3}{2}-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)
\(f(x)=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}\)
Với mọi giá trị nguyên của $x$ thì $(x-1)x$ là tích của hai số nguyên liên tiếp nên luôn chia hết cho $2$
Do đó: \(x^2(x-1)\vdots 2\Rightarrow f(x)=\frac{x^2(x-1)}{2}\in\mathbb{Z}\) với mọi gt nguyên của $x$ (đpcm)