K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

4 tháng 11 2019

Có phải ở sách NCPT ko bn

29 tháng 6 2017

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{2015^2}\)

\(\Leftrightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2014.2025}\)

\(\Leftrightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2014.2015}\)

\(\Leftrightarrow B< 1-\frac{1}{2015}< 1\)

\(\Leftrightarrow B< 1\rightarrowđpcm\)

29 tháng 6 2017

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\)

+ Xét : \(\frac{1}{1\cdot2}>\frac{1}{2^2}\)

\(\frac{1}{2\cdot3}>\frac{1}{3^2}\)

\(\frac{1}{3\cdot4}>\frac{1}{4^2}\)

...

\(\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(A=1-\frac{1}{2015}< 1\)

\(\Rightarrow B< A< 1\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
26 tháng 4 2018

Lời giải:

Ta có:

\(f(x)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)

\(f(x)=\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^3}{2}-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\)

\(f(x)=\frac{x^3}{2}-\frac{x^2}{2}=\frac{x^2(x-1)}{2}\)

Với mọi giá trị nguyên của $x$ thì $(x-1)x$ là tích của hai số nguyên liên tiếp nên luôn chia hết cho $2$

Do đó: \(x^2(x-1)\vdots 2\Rightarrow f(x)=\frac{x^2(x-1)}{2}\in\mathbb{Z}\) với mọi gt nguyên của $x$ (đpcm)