K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

ở câu hỏi hay có đó mk nhớ là v bạn vô tìm thử xem nếu k có thì bảo mk

14 tháng 9 2016

cái câu hỏi mình viết sai đó

nó là như vậy nè:cho x,y,z>0 

cm:1<\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)

3 tháng 1 2016

2;3;6

tớ thấy 1/2+1/3+1/6=1 nên tớ làm vậy

3 tháng 1 2016

2;3;6.Bài này tụi tui thi rồi.An tâm.

16 tháng 7 2020

Sai đề nhá, đáng lẽ \(0\le x,y,z\le1\)

Ta dễ có:
\(1+y+zx\le x^2+xy+xz\Rightarrow\frac{x}{1+y+zx}\ge\frac{x}{x^2+xy+xz}=\frac{1}{x+y+z}\)

Tương tự:

\(\frac{y}{1+z+xy}\ge\frac{1}{x+y+z};\frac{z}{1+z+yz}\ge\frac{1}{x+y+z}\)

\(\Rightarrow\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+z+yz}\ge\frac{3}{x+y+z}\)

Đẳng thức xảy ra tại x=y=z=1

20 tháng 8 2015

Có thể giải bài toán bằng cách áp dụng bất đẳng thức Cauchy-Schwartz sau đây

Bổ đề. Với mọi số thực \(a,b,c\)  và các số dương \(x,y,z\)  ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}.\) Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\).

Chứng minh. Đầu tiên ta chứng minh \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}.\)  Thực vậy bất đẳng thức tương đương với \(\left(ya^2+xb^2\right)\left(x+y\right)\ge xy\left(a+b\right)^2\Leftrightarrow b^2x^2+a^2y^2\ge2abxy\)  (Đúng).

Áp dụng bất đẳng thức trên hai lần ta được

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}.\)

Quay trở lại bài toán, ta có

\(A=\frac{\left(1-x\right)^2}{z}+\frac{\left(1-y\right)^2}{x}+\frac{\left(1-z\right)^2}{y}\ge\frac{\left(1-x+1-y+1-z\right)^2}{z+x+y}=\frac{\left(3-x-y-z\right)^2}{x+y+z}=\frac{1}{2}.\)

Khi  \(x=y=z=\frac{2}{3}\)  thì \(A=\frac{1}{2}\). Vậy giá trị bé nhất của \(A\)\(\frac{1}{2}\).

22 tháng 9 2015

Từ \(y,z\le1\to\left(y-1\right)\left(z-1\right)\ge0\to yz+1\ge y+z\to\frac{1}{x+1+yz}\le\frac{1}{x+y+z}\to\frac{z}{x+1+yz}\le\frac{z}{x+y+z}\)

Chứng minh tương tự \(\frac{x}{y+1+xz}\le\frac{x}{x+y+z},\frac{y}{z+1+yx}\le\frac{y}{x+y+z}.\)

Cộng lại ta được \(A\le\frac{x+y+z}{x+y+z}=1\le\frac{3}{x+y+z},\) do \(x,y,z\le1.\)