Một hộp đựng 9 thẻ được đánh số 1;2;3;4;5;6;7;8;9. Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để kết quả thu được là một số chẵn.
A. 5 18
B. 13 18
C. 1 6
D. 8 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Rút ngẫu nhiên 2 thẻ trong 9 thẻ có C 9 2 cách ⇒ n ( Ω ) = C 9 2
Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”
Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ => có C 5 2 cách => n ( X ) = C 5 2 .
Vậy xác suất cần tính là P = n ( X ) n ( Ω ) = C 5 2 C 9 2 = 5 18 .
Đáp án A
Rút ngẫu nhiên 2 thẻ trong 9 thẻ có C 9 2 cách ⇒ n Ω = C 9 2
Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”
Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ ⇒ có C 5 2 cách ⇒ n X = C 5 2
Vậy xác suất cần tính là P = n X n Ω = C 5 2 C 9 2 = 5 18
Chọn C.
Gọi A: “tích 2 số ghi trên 2 thẻ được rút ra là số lẻ” = “cả hai số rút được đều là số lẻ”
Phương pháp:
Tính xác suất theo định nghĩa P A = n A n ( Ω ) với n ( A ) là số phần tử của biến cố A, n Ω là số phần tử của không gian mẫu
Cách giải:
Số phần tử của không gian mẫu n Ω = C 9 2
Gọi A là biến cố “rút ra hai thẻ có tích hai số ghi trên hai thẻ là số chẵn”
Khi đó hai thẻ đó hoặc cùng mang số chẵn, hoặc 1 thẻ mang số chẵn và 1 thẻ mang số lẻ.
Trong 9 thẻ đã cho có 4 thẻ mang số chẵn 2;4;6;8 và 5 thẻ mang số lẻ 1;3;5;7;9
Nên số cách rút ra 2 thẻ mang số chẵn là C 4 2
Số cách rút ra 1 thẻ mang số chẵn và 1 thẻ mang số lẻ là
Số phần tử của biến cố A là C 4 1 C 5 1