K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

13 tháng 12 2019

20 tháng 6 2019

Chọn A

27 tháng 12 2019

Chọn A

Phương pháp:

- Dựng hình hộp chữ nhật SB'C'D'.ABCD, xác định góc giữa BD và (SBC) (nhỏ hơn  90 0 ) là góc giữa

BD và hình chiếu của nó trên (SBC) .

- Sử dụng các kiến thức hình học đã học ở lớp dưới tìm sin α .

Cách giải:

Qua B,C,D lần lượt kẻ các đường thẳng vuông góc với đáy.

Dựng hình hộp chữ nhật SB'C'D'.ABCD như hình vẽ.

Dễ thấy mặt phẳng (SBC) được mở rộng thành mặt phẳng (SBCD').

Tam giác D'DC D'D = DC = a   D = 90 0  nên vuông cân tại D

22 tháng 5 2019

Đặt hệ trục tọa độ Oxyz như hình vẽ.

Khi đó, ta có A (0;0;0), B (a;0;0), D (0; a√3 ; 0), S (0;0;a).

Ta có , nên đường thẳng BD có vectơ chỉ phương là .

Như vậy, mặt phẳng (SBC) có vectơ pháp tuyến là 

Do đó, α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC) thì

14 tháng 2 2018

Chọn đáp án C.

ABCD là hình chữ nhật nên BD = 2a, ta có AD//(SBC) nên suy ra

 với AH ⊥ SB. Tam giác SAB vuông cân tại A nên H là trung điểm của SB suy ra  A H   = a 2 2

Vậy

29 tháng 7 2017

Chọn C

Đặt hệ trục tọa độ Oxyz như hình vẽ. Khi đó, ta có A (0; 0; 0), B (a; 0; 0), D (0; a√3; 0), S (0; 0; a)

Ta có , nên đường thẳng BD có vectơ chỉ phương là

 

 

Như vậy, mặt phẳng (SBC) có vectơ pháp tuyến là . Do đó, α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC) thì:

9 tháng 5 2018

Đáp án C

Dựng hình bình hành SBCM. Kẻ D H ⊥ C M    H ∈ C M  

Ta có

B D ⊥ S B C = B D H ⊥ S B C ⇒ B D ; S B C ^ = B D ; B H ^ = D B H ^ = α  

Tam giác CDM vuông cân tại D, có C D = a ⇒ D H = a 2 2  

Tam giác BDH vuông tại H, có  sin α = D H B D = 2 4 .

30 tháng 4 2019

28 tháng 4 2019

Đáp án A

Phương pháp: Cách xác định góc giữa đường thẳng và mặt phẳng:

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Cách giải: ABCD là hình chữ nhật 

Vì SA ⊥ (ABCD) nên (SC;(ABCD)) = (SC;AC) =  S C A ^

Ta có: AB//CD, CD ⊂ (SCD) => d(B;(SCD)) = d(A;(SCD))

Kẻ AH ⊥ SD, H ∈ SD

Ta có: 

Mà AH ⊥ SD => AH ⊥ (SCD) => d(A;(SCD)) = AH

Tam giác SAD vuông tại A,