Cho hàm số y = f(x) xác định trên R\{2}, liên tục trên mỗi khoảng và có bảng biến thiên như sau
Tập hợp tất cả các số thực m sao cho phương trình f(x) = m có hai nghiệm thực phân biệt là
A. − ∞ ; 1 .
B. {3}
C. − ∞ ; 1 ∪ 3 .
D. − ∞ ; 1 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Số nghiệm phương trình f(x) = m là số giao điểm của hai đường y = f(x) và y = m.
Phương trình có 3 nghiệm thực phân biệt khi đường thẳng y = m cắt đồ thị y= f(x) tại ba điểm phân biệt.
Dựa vào bảng biến thiên có .
Đáp án A
PT có hai nghiệm thực phân biệt ⇔ m - 1 < 0 m - 1 > 4 ⇔ m < 1 m > 5
Đáp án D
Từ bảng biến thiên ta thấy với m = 2 hoặc m ≤ 1 thì đồ thị hàm số y = f(x) cắt đường thẳng y = m tại 2 điểm phân biệt hay phương trình f(x) = m có 2 nghiệm phân biệt.
Đáp án C.