Cho tam giác ABC nhọn, đường cao AH. Xác định điểm D và E sao cho AB là đường trung trực của HD, AC là trung trực của HE. Gọi I và K lần lượt là giao điểm của DE với AB, AC. Chứng minh AH, BK, CI đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) ta co : goc BHI+goc IHA =90 ( 2 goc ke phu)
----> goc BHI =90- goc IHA
ma goc IHA = goc ADI ( tam giac ADI = tam giac AHI)
nen goc BHI=90- goc ADI (1)
ta co :
goc ADE = (180- goc DAE):2 ( tam giac ADE can tai A)
ma goc DAE= 2. goc BAC ( cm cau b)
nen goc ADE = (180-2.goc BAC):2= 90-goc BAC
---> goc BAC =90- goc ADE (2)
tu (1) va (2) suy ra goc BHI= goc BAC
A = 100* => B^ = C^ = 40*
trên CA lấy điểm E sao cho CB = CE
C^ = 40* và MCB^ = 20* => MCB^ = MCE^ = 20*
=> ΔCBM = Δ CEM ( c.g.c) => MEC^ = MBC^ = 10*
BCE^ = 40* và Δ BCE cân tại C => CEB^ = (180* - 40*)/2 = 70*
=>MEB^ = 60* (1)
ΔCBM = Δ CEM => MB = ME (2)
(1) và (2) => BME là tam giác đều MB = BE (1*)
ABC^ = 40* ; MBC^ = 10* => ABM^ = 30*
ABE^ = CBE^ - ABC^ = 70* - 40* = 30*
=> ABM^ = ABE^ (2*)
(1*) và (2*) => ΔABM = Δ ABE (vì có thêm AB là cạnh chung)
=> AMB^ = AEB^ = 70*