K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

25 tháng 12 2019

3 tháng 12 2019

Đáp án C

15 tháng 12 2021

Gọi u1,du1,d lần lượt là số hạng đầu và công sai của cấp số cộng

Ta có: {u5=−15u20=60u5=-15u20=60.

Vậy S10=102.(2u1+9d)=−125

15 tháng 12 2021

\(\left\{{}\begin{matrix}u_5=-15\\u_{20}=60\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1+4d=-15\\u_1+19d=60\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u_1=-35\\d=5\end{matrix}\right.\)

\(\Rightarrow S_{20}=\dfrac{20.\left(u_1+u_{20}\right)}{2}\)

\(=10\left(2u_1+19d\right)\)

\(=10\left(-2.35+19.5\right)\)

\(=250\)

4 tháng 6 2017

17 tháng 2 2019

Đáp án C.

Gọi số hạng đầu và công sai của CSC (unlà u1, d ta có

Suy ra 

 

1 tháng 5 2017

Phương pháp:

S n = n u 1 + n ( n - 1 ) d 2  

Cách giải:

Ta có:

⇒ S 20 = n u 1 + n ( n - 1 ) 2 d = - 320

Chọn C

NV
5 tháng 1 2022

\(\left\{{}\begin{matrix}u_1+d=3\\u_1+9d=-15\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}u_1=\dfrac{21}{4}\\d=-\dfrac{9}{4}\end{matrix}\right.\)

\(S_{20}=\dfrac{21}{4}.20+\dfrac{19.20}{2}.\left(-\dfrac{9}{4}\right)=-\dfrac{645}{2}\)

27 tháng 10 2023

Theo đề, ta có: \(S_n=3003\)

=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)

=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)

=>n(n+1)=6006

=>n^2+n-6006=0

=>(n-77)(n+78)=0

=>n=77(nhận) hoặc n=-78(loại)

Vậy: n=77

8 tháng 7 2017