Tìm tất cả các nghiệm thực của tham số m sao cho đồ thị của hàm số y = x + 1 x 3 - 3 x 2 - m có đúng một tiệm cận đứng.
A. m > 0 hoặc m < -4
B. m ≥ 0 hoặc m ≤ -4
C. m > 0 hoặc m ≤ -4
D. m ∈ ℝ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 : Phương trình x3-3x2-m=0 có một nghiệm đơn x= -1 và một nghiệm kép.
Phương trình x3-3x2-m=0 có nghiệm x=-1 nên (-1)3-3(-1)2-m=0 hay m = -4.
Với m= -4 phương trình trở thành
(thỏa mãn vì x=2 là nghiệm kép).
TH2: Phương trình x3-3x2-m=0 có đúng một nghiệm khác -1 hay x3-3x2=m có một nghiệm khác -1
Vậy với thỏa mãn yêu cầu đề bài.
Chọn C.
TH1 : Phương trình x3- 3x2-m=0 có một nghiệm đơn x= -1 và một nghiệm kép.
Phương trình x3- 3x2-m=0 có nghiệm x= -1 nên ( -1) 3-3( -1) 2-m=0 hay m= -4.
Với m= -4 phương trình trở thành
(thỏa mãn vì x= 2 là nghiệm kép).
TH2: Phương trình x3- 3x2-m=0 có đúng một nghiệm khác – 1 hay x3- 3x2= m có một nghiệm khác -1
Vậy với m> 0 hoặc m≤ - 4 thỏa mãn yêu cầu đề bài.
Chọn C.
Do mẫu có bậc 2 còn tử bậc 1 \(\Rightarrow\)hàm không có tiệm cận đứng khi và chỉ khi phương trình \(x^2-2mx+1=0\) vô nghiệm
\(\Leftrightarrow\Delta'=m^2-1< 0\)
\(\Rightarrow-1< m< 1\)
ĐKXĐ: \(x\le1\)
Hàm có tiệm cận đứng khi và chỉ khi phương trình:
\(x-m=0\) có nghiệm \(x< 1\)
\(\Leftrightarrow m< 1\)
Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)
\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
Đáp án D
Dễ thấy hàm số có 1 TCN y = 1.
Để hàm số có 1 TCĐ thì PT x 2 − x − m = 0 phải có 1 nghiệm x = 2 hoặc x= -2.
Vậy m ∈ 2 ; 6
Đáp án A
Ta có: lim x → + ∞ y = 0 ⇒ đồ thị hàm số có 1 tiệm cận ngang là y = 0 .
Để đồ thị hàm số có 3 tiệm cận thì phương trình : g x = x 2 − 2 m x + m + 2 = 0 có 2 nghiệm phân biệt
x 1 > x 2 ⇔ Δ ' = m 2 − m − 2 > 0 x 1 − 1 x 2 − 1 ≥ 0 x 1 − 1 + x 2 − 1 > 0 ⇔ m + 1 m − 2 > 0 x 1 x 2 − x 1 + x 2 + 1 ≥ 0 x 2 + x 2 > 2 ⇔ m + 1 m − 2 > 0 m + 2 − 2 m + 1 > 0 2 m > 2 ⇔ 3 ≥ m > 2.
Chọn C.
Xét phương trình
Số nghiệm của (*) là số giao điểm của đường thẳng y = m và đồ thị hàm số y = f(x)
Xét hàm số
Bảng biến thiên của hàm số f(x)
Đồ thị hàm số y = x + 1 x 3 - 3 x 2 - m có đúng một tiệm cận đứng thì phương trình (*) phải thỏa mãn một trong các trường hợp sau:
+) TH1: Phương trình (*) có duy nhất nghiệm x ≠ -1
Dựa vào BBT ta thấy phương trình (*) có nghiệm duy nhất x ≠ -1 khi
+) TH2: Phương trình (*) có 2 nghiệm trong đó có 1 nghiệm x = -1 và 1 nghiệm kép
Dựa vào BBT ta thấy phương trình (*) có 2 nghiệm trong đó có 1 nghiệm x = -1 và một nghiệm kép khi m = -4
Kết hợp hai trường hợp ta có giá trị của tham số m thỏa mãn đề bài là