K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

Vt lại đề nhé (khó nhìn)

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)

Chứng minh : \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=x\Rightarrow a=bx;c=dx\)

Lần lượt thay vào các vế, ta được :

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5.b.x+3b}{5.b.x+3b}=\dfrac{b\left(5x+3\right)}{b\left(5x+3\right)}=\dfrac{5x+3}{5x+3}\left(1\right)\)

\(\dfrac{5c-3d}{5c-3d}=\dfrac{5.d.x-3d}{5.d.x-3d}=\dfrac{d\left(5x-3\right)}{d\left(5x-3\right)}=\dfrac{5x-3}{5x-3}\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)

\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\left(đpcm\right)\)

9 tháng 7 2019

tra mạng có bài giải chi tiết rồi đó bạn

9 tháng 7 2019

cảm ơn

9 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{bk+b}{b}=\frac{dk+d}{d}\)

Xét VT \(\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\left(1\right)\)

Xét VP \(\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\left(2\right)\)

Từ (1) và (2) -->Đpcm

b)Đặt tương tự ta có:

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Leftrightarrow\frac{5bk+3b}{5bk-3b}=\frac{5dk+3d}{5dk-3d}\)

Xét VT \(\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-2}\left(1\right)\)

Xét VP \(\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) -->Đpcm

9 tháng 8 2016

Bạn xem lại đề nhé :)

1) Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

2) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{5}{3}.\frac{a}{b}=\frac{5}{3}.\frac{c}{d}\Rightarrow\frac{5a}{3b}-1=\frac{5c}{3d}-1\Rightarrow\frac{5a-3b}{3b}=\frac{5c-3d}{3d}\)

\(\Rightarrow\frac{3b}{5a-3b}=\frac{3d}{5c-3d}\Rightarrow\frac{6b}{5a-3b}=\frac{6d}{5c-3d}\Rightarrow\frac{6b}{5a-3b}+1=\frac{6d}{5c-3d}+1\)

\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

8 tháng 8 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)

a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)\(=\dfrac{\dfrac{a}{k}.b}{\dfrac{c}{k}.d}=\dfrac{ab}{cd}=VT\)

Vậy...

b) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\)

Suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

c) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(bk\right)^2+3\left(bk\right).b}{11\left(bk\right)^2-8b^2}\)\(=\dfrac{7k^2+3k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3\left(dk\right).d}{11\left(dk\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)

Suy ra \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

8 tháng 8 2023

a) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(ad=bc\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\) => \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)

(theo tính chất dãy tỉ số bằng nhau)

=> (đpcm)

b) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)(theo tính chất dãy tỉ số bằng nhau)

=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\) (đpcm)

c) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{a^2}{c^2}=\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\)          => \(\dfrac{7a^2}{7c^2}=\dfrac{3ab}{3cd}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}\)

=> \(\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\) (theo tính chất dãy tỉ số bằng nhau)

=> \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)(đpcm)

#Ayumu

15 tháng 10 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

17 tháng 10 2018

vãi cả loz sao lại sai ?

9 tháng 8 2016

1) Vì a/b = c/d

=> a/b + 1 = c/d + 1

=> a + b/b = c + d/d (đpcm)

2) Vì a/b = c/d

=> a/c = b/d

=> 5a/5c = 3b/3d = 5a + 3b/5c + 3d = 5a - 3b/5c - 3d ( theo tc DTSBN )

=> 5a + 3b/5a - 3b = 5c + 3d/5c - 3d

9 tháng 8 2016

1,a/b=c/d

=>\(\frac{a}{b}+1=\frac{c}{d}+1\)

=>\(\frac{a+b}{b}=\frac{c+d}{d}\)

27 tháng 8 2023

a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)

 \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

\(\Rightarrow dpcm\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

\(\Rightarrow dpcm\)

27 tháng 8 2023

Thanks