Tìm n thuộc N sao cho n+1 chia hết cho 2n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
--------------------------------------...
Chúc bạn học tốt
a/ N + 2 chia hết n - 1
có nghĩa là \(\frac{n+2}{n-1}\) là số nguyên
\(\frac{n+2}{n-1}=1+\frac{3}{n-1}\) muốn nguyên thì n-1 thuộc Ư(3)={-1,-3,1,3}
- n-1=-1=>n=0
- n-1=1=>n=2
- n-1=-3=>n=-2
- n-1=3=>n=4
do n thuộc N => cacsc gtri thỏa là {0,2,4}
b/ 2n + 7 chia hết cho n+1 có nghĩa là : \(\frac{2n+7}{n+1}=2+\frac{5}{n+1}\)
là số nguyên
để nguyên thì n+1 thuộc Ư(5)={1,5,-1,-5}
- n+1=1=>n=0
- n+1=-1=>n=-2
- n+1=5=>n=4
- n+1=-5=>n=-6
do n thuộc N nên : các giá trị n la : {0;4}
mình giải câu đầu còn 3 câu còn lại bạn tự làm nhé
a,ta có:n-1chia hết cho n-9
suy ra n-9+8chia het cho n-9
suy ra 8 chia het cho n-9
suy ra n-9 thuoc uoc 8
suy ra n-9=1=-1=2=-2=4=-4=8=-8
suy ra n=10=8=11=9=13=11=17=15 (cung co the lap bang)
a, n + 3 \(⋮\)n - 2
\(\Rightarrow\) n + 3 - n + 2 \(⋮\)n - 2
\(\Rightarrow\)5 \(⋮\) n - 2
\(\Rightarrow\) n \(\in\){3; 1; 7; -3 }
CÁC PHẦN TIẾP THEO THÌ TƯƠNG TỰ
suy ra: 2n+1 chia het cho 2n-1
suy ra: 2n-1+3 chia het ch 2n-1
suy ra: 3 chia het cho 2n-1
suy ra:n thuoc {1;0;2;-1}
Vi n thuoc N nen n thuoc {1;0;2}
tick cho minh nha
Không tồn tại n .