Cho các số phức z thoả mãn z = 2 . Đặt w = ( 1 + 2 i ) z - 1 + 2 i . Tìm giá trị nhỏ nhất của w
A. 2
B. 3 5
C. 2 5
D. 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(z=x+yi\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2=x^2+y^2\)
\(\Rightarrow x+y+1=0\Rightarrow\) tập hợp z là đường thẳng d: \(x+y+1=0\)
\(P=\left|\left(z-4-5i\right)-\left(w-3-4i\right)\right|\ge\left|\left|z-4-5i\right|-\left|w-3-4i\right|\right|=\left|\left|z-4-5i\right|-1\right|\)
Gọi M là điểm biểu diễn z và \(A\left(4;5\right)\Rightarrow\left|z-4-5i\right|=AM\)
\(AM_{min}=d\left(A;d\right)=\dfrac{\left|4+5+1\right|}{\sqrt{1^2+1^2}}=5\sqrt{2}\)
\(\Rightarrow P\ge\left|5\sqrt{2}-1\right|=5\sqrt{2}-1\)
Chọn đáp án A
=> Tập hợp các điểm M là nửa mặt phẳng không chứa điểm I(1;1), có bờ là đường thẳng x + y = 0 (d)
Đáp án C
Đặt z = x + y i x , y ∈ ℝ ,
khi đó
z − 3 − 2 i ≤ 1 ⇔ x − 3 2 + y − 2 2 ≤ 1
Suy ra tập hợp điểm biểu diễn số phức z là miền trong đường tròn
x − 3 2 + y − 2 2 = 1.
Đặt w = a + b i a , b ∈ ℝ , khi đó w + 1 + 2 i ≤ w − 2 − i ⇔ a + b ≤ 0
Suy ra tập hợp điểm biểu diễn số phức w là miền x + y ≤ 0 , bờ là đường thẳng x + y = 0 .
Gọi C : x − 3 2 + y − 2 2 = 1 có tâm I 3 ; 2 , bán kính R = 1 và Δ : x + y = 0 .
Do đó
P = z − w = M N ⇒ M N min = d I ; Δ − R = 5 2 − 1 = 5 2 − 2 2 .