K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

Chọn D

15 tháng 5 2018

Chọn A

21 tháng 1 2019

Đáp án D

Ta có: 

2 tháng 8 2017

Đáp án D

26 tháng 11 2018

7 tháng 2 2019

Đáp án D

31 tháng 8 2018

Đáp án D

Phương pháp:

+) Xác định tâm mặt cầu ngoại tiếp khối tứ diện là điểm cách đều tất cả các đỉnh của tứ diện.

+) Áp dụng định lí Pytago tính bán kính mặt cầu ngoại tiếp tứ diện.

Cách giải:

Tam giác ABC vuông tại B, M là trung điểm của AC ⇒ M là tâm đường tròn ngoại tiếp tam giác ABC

Gọi I là trung điểm của CD ⇒ IC = ID(1)

Ta có: IM là đường trung bình của tam giác ACD ⇒ IM // AD

Mà AD ⊥ (ABC) ⇒ IM ⊥ (ABC)

Do đó, IM là trục đường tròn ngoại tiếp tam giác ABC

⇒ IA = IB = IC(2)

 

Từ (1), (2) ⇒ IA = IB = IC = ID ⇒ I là tâm mặt cầu ngoại tiếp tứ diện ABCD, bán kính mặt cầu:

3 tháng 8 2019

20 tháng 8 2019

1 tháng 11 2019

Đáp án B

Gọi G là trọng tâm Δ B C D ,  ta có A G ⊥ B C D  nên AG là trục của  Δ B C D ,

Gọi M là trung điểm của AB. Qua M dựng đường thẳng  Δ ⊥ A B , gọi I = Δ ∩ A G  

Do đó mặt cầu ngoại tiếp tứ diện ABCD có tâm là I và bán kính  R = I A

Ta có Δ A M I , Δ A G B là hai tam giác vuông đồng dạng nên  I A A B = A M A G ⇒ A I = A B . A M A G

Do A B = a 2 , A M = a 2 2 , A G = a 2 2 − 2 3 . a 2 . 3 2 2 = 2 a 3 3  

Khi đó R = A I = a 2 . a 2 2 2 a 3 3 = a 3 2  

Cách 2: Áp sụng công thức giải nhanh R = A B 2 2 S G = a 3 2