Tìm bán kính mặt cầu ngoại tiếp tứ diện ABCD với A(3;3;0); B(3;0;3); C(0;3;3) và D(3;3;3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
+) Xác định tâm mặt cầu ngoại tiếp khối tứ diện là điểm cách đều tất cả các đỉnh của tứ diện.
+) Áp dụng định lí Pytago tính bán kính mặt cầu ngoại tiếp tứ diện.
Cách giải:
Tam giác ABC vuông tại B, M là trung điểm của AC ⇒ M là tâm đường tròn ngoại tiếp tam giác ABC
Gọi I là trung điểm của CD ⇒ IC = ID(1)
Ta có: IM là đường trung bình của tam giác ACD ⇒ IM // AD
Mà AD ⊥ (ABC) ⇒ IM ⊥ (ABC)
Do đó, IM là trục đường tròn ngoại tiếp tam giác ABC
⇒ IA = IB = IC(2)
Từ (1), (2) ⇒ IA = IB = IC = ID ⇒ I là tâm mặt cầu ngoại tiếp tứ diện ABCD, bán kính mặt cầu:
Đáp án B
Gọi G là trọng tâm Δ B C D , ta có A G ⊥ B C D nên AG là trục của Δ B C D ,
Gọi M là trung điểm của AB. Qua M dựng đường thẳng Δ ⊥ A B , gọi I = Δ ∩ A G
Do đó mặt cầu ngoại tiếp tứ diện ABCD có tâm là I và bán kính R = I A
Ta có Δ A M I , Δ A G B là hai tam giác vuông đồng dạng nên I A A B = A M A G ⇒ A I = A B . A M A G
Do A B = a 2 , A M = a 2 2 , A G = a 2 2 − 2 3 . a 2 . 3 2 2 = 2 a 3 3
Khi đó R = A I = a 2 . a 2 2 2 a 3 3 = a 3 2
Cách 2: Áp sụng công thức giải nhanh R = A B 2 2 S G = a 3 2
Chọn D