K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

ĐAp án A

Phương trình hoành độ giao điểm là: x 4 − 3 x 2 − 2 − m = 0   1  

Gọi A x ; m ; B − x ; m là tọa độ giao điểm

Khi đó Δ O A B vuông tại O khi  O A ¯ . O B ¯ = − x 2 + m 2 = 0 ⇔ x = m

Khi đó m 4 − 3 m 2 − 2 − m = 0 ⇔ m = 2  (thỏa mãn).

29 tháng 5 2017

20 tháng 3 2019

Chọn D

Phương trình hoành độ giao điểm :

Theo yêu cầu bài toán : phải có hai nghiệm phân biệt khác

Gọi , suy ra là trọng tâm của tam giác

 

Theo yêu cầu bài toán :

.

13 tháng 8 2019

Đáp án D

PTHĐGĐ: x 2 + ( m − 3 ) x − 2 m − 1 = 0    ( * )            ĐK:  ( m − 3 ) 2 + 4 ( 2 m + 1 ) > 0

Gọi x1, x2 là 2 nghiệm phân biệt của (*) ⇒ A x 1 ; x 1 + m , B x 2 ; x 2 + m  với S = x1 + x2 = 3 – m

Gọi G là trọng tâm tam giác OAB ⇒ G x 1 + x 2 3 ; x 1 + x 2 + 2 m 3 ⇒ G S 3 ; S + 2 m 3

G ∈ ( C ) : x 2 + y 2 − 3 y = 4       

⇒ S 9 2 + ( S + 2 m ) 9 2 − ( S + 2 m ) = 4 ⇔ S 2 + ( S + 2 m ) 2 − 9 ( S + 2 m ) = 36

⇔ ( 3 − m ) 2 + ( 3 + m ) 2 − 9 ( 3 + m ) = 36 ⇔ 2 m 2 − 9 m − 45 = 0 ⇔ m = − 3    ( n ) m = 15 2    ( n )

20 tháng 11 2019

Chọn B

đều thỏa mãn điều kiện.

 

27 tháng 12 2019

Đáp án C

Điều kiện: x≠2.

Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình

2 x x − 2 = x + m ⇔ 2 x x − 2 − x − m = 0 ⇔ 2 x − x 2 + 2 x − m x + 2 m x − 4 = 0 ⇔ − x 2 + 4 − m x + 2 m x − 2 = 0.

Để hai đồ thị hàm số giao nhau tại hai điểm phân biệt A,B ta có

4 − m 2 + 8 m > 0 g 2 ≠ 0 ⇔ m 2 + 16 > 0 − 4 + 8 − 2 m + 2 m ≠ 0

thỏa mãn với mọi m ∈ ℝ .

Theo bài ra ta có x A + x B + x O = 3 x A + m + x B + m + y O = 7 ⇔ 4 − m = 3 4 − m + 2 m = 5 ⇔ m = 1 .

Vậy m=1 thỏa mãn điều kiện đề bài.

19 tháng 3 2017

22 tháng 10 2017

14 tháng 6 2021

- Xét phương trình hoành độ giao điểm :\(x^2-2x+2=x+m\)

\(\Leftrightarrow x^2-3x+2-m=0\)

\(\Delta=b^2-4ac=9-4\left(2-m\right)=9-8+4m=4m+1\)

- Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\) \(\Leftrightarrow m>-\dfrac{1}{4}\left(1\right)\)

Theo viet : \(\left\{{}\begin{matrix}x_a+x_b=3\\x_ax_b=2-m\end{matrix}\right.\)

- Ta có : \(OA^2+OB^2=10\)

\(\Leftrightarrow x^2_A+y^2_A+x_B^2+y^2_B=10\)

\(\Leftrightarrow x^2_a+x^2_b+\left(x_a+m\right)^2+\left(x_b+m\right)^2=10\)

\(\Leftrightarrow2x^2_a+2x^2_b+2m\left(x_a+x_b\right)+2m^2=10\)

\(\Leftrightarrow2\left(x_a+x_b\right)^2-4x_ax_b+2m\left(x_a+x_b\right)+2m^2-10=0\)

\(\Leftrightarrow18-4\left(2-m\right)+6m+2m^2-10=0\)

\(\Leftrightarrow2m^2+10m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)

- Kết hợp ĐK (1) => m = 0 ( TM )

Vậy ...