Nếu log a x = 1 2 log a 25 + log a 3 − 2 log a 2 với 0 < a ≠ 1 thì x bằng
A. x = 27
B. x = 30
C. x = 45 2
D. x = 15 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>0\)
\(log_{a^4}x-log_{a^2}x+log_ax=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}log_ax-\frac{1}{2}log_ax+log_ax=\frac{3}{4}\)
\(\Leftrightarrow\frac{3}{4}log_ax=\frac{3}{4}\)
\(\Leftrightarrow log_ax=1\)
\(\Rightarrow x=a\)
\({a^{\frac{1}{2}}} = b \Leftrightarrow {\log _a}b = \frac{1}{2} \Leftrightarrow 2{\log _a}b = 1\)
Chọn B.
\(a^2+4b^2=23ab\Rightarrow a^2+4ab+4b^2=27ab\Rightarrow\left(a+2b\right)^2=27ab\)
\(\Rightarrow\dfrac{\left(a+2b\right)^2}{9}=3ab\)\(\Rightarrow\left(\dfrac{a+2b}{3}\right)^2=3ab\)
Lấy logarit cơ số c hai vế:
\(log_c\left(\dfrac{a+2b}{3}\right)^2=log_c\left(3ab\right)\)
\(\Rightarrow2log_c\dfrac{a+2b}{3}=log_c3+log_ca+log_cb\)
\(\Rightarrow log_c\dfrac{a+2b}{3}=\dfrac{1}{2}\left(log_ca+log_cb+log_c3\right)\)
Lời giải:
a) ĐKXĐ:......
Ta có: \(\log_{2x+1}(3-x^2)=2\)
\(\Leftrightarrow 3-x^2=(2x+1)^2\)
\(\Leftrightarrow 5x^2+4x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{14}}{5}\\x=\dfrac{-2-\sqrt{14}}{5}\end{matrix}\right.\)
Kết hợp với đkxđ suy ra \(x=\frac{-2+\sqrt{14}}{5}\) là nghiệm
b) ĐKXĐ:....
Đặt \(2-x=a\Rightarrow \log_2(2a+1)=a\) (\(a>\frac{-1}{2}\))
\(\Leftrightarrow 2a+1=2^a\)
Xét hàm \(y(a)=2^a-2a-1\)
\(\Rightarrow y'=\ln 2.2^a-2=0\Leftrightarrow a=\log_2\left(\frac{2}{\ln 2}\right)\)
Lập bảng biến thiên của $y(a)$ với $a>\frac{-1}{2}$ ta thấy đồ thì của $y(a)$ cắt đường thẳng \(y=0\) tại hai điểm, tức là pt có hai nghiệm. Trong đó một nghiệm thuộc \((-\frac{1}{2}; \log_2\left(\frac{2}{\ln 2}\right))\) và nghiệm khác thuộc \((\log_2\left(\frac{2}{\ln 2}\right);+\infty)\)
Thực hiện shift-solve ta thu được \(a=0\) hoặc \(a\approx 2,66\)
Câu c)
ĐKXĐ: \(x>-1\)
Ta có: \(\log_2(x+1)=4-3x\Leftrightarrow x+1=2^{4-3x}\)
Ta thấy:
\((x+1)'=1>0\) nên hàm vế trái đồng biến trên KXĐ
\((2^{4-3x})'=-3.\ln 2.2^{4-3x}<0\) nên hàm vế phải nghịch biến trên KXĐ
Do đó, PT chỉ có thể có duy nhất một nghiệm
Thấy \(x=1\) thỏa mãn nên $x=1$ là nghiệm duy nhất của phương trình
\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)
=>B
\(a,\left(0,3\right)^{x-3}=1\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\\ b,5^{3x-2}=25\\ \Leftrightarrow3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\\ c,9^{x-2}=243^{x+1}\\ \Leftrightarrow3^{2x-4}=3^{5x+5}\\ \Leftrightarrow2x-4=5x+5\\ \Leftrightarrow3x=-9\\ \Leftrightarrow x=-3\)
d, Điều kiện: \(x>-1;x\ne0\)
\(log_{\dfrac{1}{x}}\left(x+1\right)=-3\\ \Leftrightarrow x+1=x^3\\ x\simeq1,325\left(tm\right)\)
e, Điều kiện: \(x>\dfrac{5}{3}\)
\(log_5\left(3x-5\right)=log_5\left(2x+1\right)\\ \Leftrightarrow3x-5=2x+1\\ \Leftrightarrow x=6\left(tm\right)\)
f, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{7}}\left(x+9\right)=log_{\dfrac{1}{7}}\left(2x-1\right)\\ \Leftrightarrow x+9=2x-1\\ \Leftrightarrow x=10\left(tm\right)\)
Đáp án D
log a x = 1 2 log a 25 + log a 3 − 2 log a 2 = log a 5 + log a 3 − log a 4 = log a 15 4 ⇔ x = 15 4