K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

Ta có: -2 – 7x > (3 + 2x) – (5 – 6x) ⇔ -2 – 7x > 3 + 2x – 5 + 6x

⇔ -7x – 2x – 6x > 3 – 5 + 2

⇔ -15x > 0 ⇔ x < 0

Vậy tập nghiệm của bất phương trình là: {x|x < 0}

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

18 tháng 5 2016

3.(2x2+5) > 6x.(x+5)

<=>6x2+15 > 6x2+30x

<=>15 > 30x (cùng bớt đi 6x2)

<=>30x < 15

<=>x < \(\frac{15}{30}=\frac{1}{2}\)

Vậy x < 1/2 thì thỏa mãn BPT

18 tháng 5 2016

3(2x2+5) \(\ge\) 6x(x+5)

\(\Leftrightarrow\) 6x2 +15 \(\ge\) 6x2 + 30x

\(\Leftrightarrow\) 15 \(\ge\) 30x \(\Leftrightarrow\) x \(\le\)\(\frac{1}{2}\)

1) Ta có: \(a>b\)

\(\Leftrightarrow-2020a< -2020b\)(nhân hai vế của bất đẳng thức cho -2020 và đổi dấu)

\(\Leftrightarrow-2020a+2021< -2020b+2021\)(cộng hai vế của bất đẳng thức cho 2021)(đpcm)

2) Ta có: \(-2-7x>\left(3+2x\right)-\left(5-6x\right)\)

\(\Leftrightarrow-2-7x>3+2x-5+6x\)

\(\Leftrightarrow-2-7x>8x-2\)

\(\Leftrightarrow-2-7x-8x+2>0\)

\(\Leftrightarrow-15x>0\)

\(\Leftrightarrow-15x\cdot\frac{-1}{15}< 0\cdot\frac{-1}{15}\)(nhân hai vế của bất đẳng thức cho \(-\frac{1}{15}\) và đổi dấu)

hay x<0

Vậy: S={x|x<0}

21 tháng 12 2016

Giao lưu:

Nhân 2

\(\Leftrightarrow y^2-6y+10>0\)

(y-3)^2+1>0 => dúng với mọi y=> đúng với mọi x

21 tháng 12 2016

E rằng ngonhuminh không bắt được cái gió mùa này rồi:

\(2x^2-6x+5>0\Leftrightarrow4x^2-12x+10>0\Leftrightarrow\left(2x-3\right)^2+1>0\)

Ta có \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1>0\)

Vậy bất phương trình đã cho nguyện đúng với mọi x.

5 tháng 4 2017

a) \(x^2-2x+3>0\)

\(\left(x-1\right)^2+2>0\) =>N0 đúng với mọi x

b)

\(x^2-6x+9>0\Leftrightarrow\left(x-3\right)^2>0\Rightarrow N_0\forall x\ne3\)

3 tháng 10 2017

a) Trường hợp 1. Xét 4 - 5x = 5 - 6x.

Tìm được x = 1.