Bài 1 : Với n thuộc Z , các số sau là chẵn hay lẻ :
a, n . ( n + 1 )
b, ( 3n - 4 ) ( 3n + 19 )
c, \(n^2-n+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3n - 3)(3n + 19)
Vì n \(\in\)Z nên 3n - 4; 3n + 19 cũng \(\in\)Z
Vì 2 thừa số đều mang tính chất chẵn;lẻ
\(\Rightarrow\)Tích chúng là số chẵn
n2 - n + 1
\(\Rightarrow\)n( n - 1 ) + 1
Mà n ; n - 1 là 2 số nguyên liên tiếp
\(\Rightarrow\)Sẽ có 1 số chẵn \(\Rightarrow\)n( n - 1 ) là chẵn \(\Rightarrow\)n( n + 1 ) là số lẻ
\(\Rightarrow\)n2 - n + 1 là số lẻ
n^2-n+1= n(n-1) +1
mà n, n-1 là 2 số nguyên liên tiếp => n(n-1) là số chẵn=> n(n-1) +1 là số lẻ
CMTT (3n-4)(3n+19) là chẵn
2.
nếu a = 3
thì ta có (3 - 1) . (3 + 2) + 12 =2 . 5 + 12 = 10+ 12 = 22 mà 22 không chia hết cho 9 =>
(a-1).(a+2) + 12 không là bội của 9
Bài 1:
a; (n + 4) \(⋮\) ( n - 1) đk n ≠ 1
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -4; 0; 2; 6}
Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1
n2 + 2n + 1 - 4 ⋮ n + 1
(n + 1)2 - 4 ⋮ n + 1
4 ⋮ n + 1
n + 1 \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
n \(\in\) {-5; -3; -2; 0; 1; 3}
Ta có: B=n2+n3=n.(n2+1)
Vì n là số tự nhiên=>n có 2 dạng là 2k và 2k+1
*Với n=2k=>B=n.(n2+1)=2k.(2k2+1) chia hết cho 2=>B chẵn(1)
*Xét n=2k+1=>B=n.(n2+1)=(2k+1).((2k+1)2+1)
=>B=(2k+1).(2k2+2.2k.1+12+1)
=>B=(2k+1).(2k.2k+2.2k+1+1)
=>B=(2k+1).(2.4k+2.2k+2)
=>B=(2k+1).(4k+2k+1).2 chia hết cho 2
=>B chẵn(2)
Từ (1) và (2)=>B là số chẵn
=>B:2(dư 0)
Mình cứ tưởng trên đời này có mỗi mình tuôi là khổ nhất hóa ra còn người khổ hơn tuôi nưa!!! Đò chính là nguyenminhtam
Noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo!!!!!!
a/ \(\left(n-4\right)\left(n-15\right)\)
Do \(n\in Z\Leftrightarrow n-4;n-15\in Z\)
Vì 2 thừa số trên đều mang t.c chẵn lẻ
=> Tích của chúng là số chẵn
b/ \(n^2-n-1\)
\(\Leftrightarrow n\left(n-1\right)-1\)
Mà \(n;n-1\) là 2 số nguyên liên tiếp
=> sẽ có 1 chẵn, 1 lẻ
=> n (n - 1) là chẵn
=> n(n - 1) - 1 là lẻ
a, vì n, n+1 là hai số nguyên liên tiếp
=> có một số chẵn
=> tích chúng là 1 số chẵn
b, vì n thuộc Z nên 3n-4;3n+19 cũng thuộc Z
Vì hai thừa số đều mang tính chẵn ; lẻ
=> tích chúng là số chẵn
c, n^2-n+1
=> n(n-1)+1
Mà n; n-1 là 2 số nguyên liên tiếp
=> sẽ có 1 số chẵn => n(n-1) là chẵn => n(n-1)+1 là số lẻ
=> n^2-n+1 là lẻ
Khó thì mới hỏi chứ , luyên thuyên -_-