Với 3 số tự nhiên 0; 1; 3 có thể viết được bao nhiêu số có ba chữ số khác nhau?
A. 4
B. 3
C. 5
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2+3+...+n=((n-1)+1)*n/2=n^2/2
1+3+5+...+(2n-1)=(((2n-1)-1)/2+1)*n/2=n^2/2
2+4+6+...+2n=((2n-2)/2+1)*n/2=n^2/2
(1) “Với mọi số tự nhiên \(x,\,\,\sqrt x \) là số vô tỉ” sai, chẳng hạn \(x = 1:\;\sqrt x = 1\) không là số vô tỉ.
(2) “Bình phương của mọi số thực đều không âm” đúng;
(3) “Có số nguyên cộng với chính nó bằng 0” đúng, số nguyên đó chính là số 0;
(4) “Có số tự nhiên n sao cho 2n – 1 = 0” sai, vì chỉ khi \(n = \frac{1}{2}\) thì 2n – 1 = 0 nhưng \(\frac{1}{2}\) không phải là số tự nhiên.
Vì a nhân với 5/12 và 10/21 đều được kết quả là các số tự nhiên nên a chia hết cho 12 và a chia hết cho 21(do (5,12) = 1 và (10,21) = 0) mà a nhỏ nhất nên a = BCNN(12,21) = 84
Vậy a = 84
Câu 1 (3 điểm)
Viết tập hợp H bao gồm các số tự nhiên khác 0; nhỏ hơn 50 và chia hết cho 3.
\(H=\left\{3;6;9;12;15;18;21;24;27;30;33;36;39;42;45;48\right\}\)
Câu 2 (3 điểm)
Dùng các số tự nhiên 0; 2; 3; 4, hãy viết tất cả các số tự nhiên có 3 chữ số khác nhau:
1) a) A = {18} có 1 phần tử
b) B = {0} có 1 phần tử
c) C = N có vô số phần tử
d) D = \(\phi\) không có phần tử nào
e) E = \(\phi\) không có phần tử nào
2) A = {0;1;2;...;9} , N = {0;1;2;;3;....9; 10; 11;....} => A \(\subset\) N
B = {0;2;4;6;8;10;12;...;...} => B \(\subset\) N
N * = {1;2;3;...} => N* \(\subset\) N
3) A = {4;5;6;...; 1999}
Từ 4 đến 1999 có 1999 - 4 + 1 = 1996 số => A có 1996 phần tử
B = {4; 6; 8 ...; 1998}
Từ 4 đến 1999 có 1996 số nên có 1996 : 2 = 998 số chẵn => B có 998 phần tử
C = {5;7;....; 1999} cũng có 998 phần tử
zaugjhfhgadghjgfdbsfshdfdxgdxkfgughhgvhghzfxdjkhygdhzkhlzfhndkfhufhjfkdlkgnzjifhLhsdjkhtlhj.ldg,lhfgkhfg
Đáp án là A
Có thể lập các số tự nhiên có ba chữ số khác nhau là: 103; 130; 301; 310
Vậy lập được 4 số có ba chữ số khác nhau.
Đáp án là A
Có thể lập các số tự nhiên có ba chữ số khác nhau là: 103; 130; 301; 310
Vậy lập được 4 số có ba chữ số khác nhau.
A
Các số có thể viết được:
\(130;310;103;301\)
Chọn A