Cho hàm số y =f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + 1 = m có bốn nghiệm thực phân biệt?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Để phương trình f(x)=m+2 có 4 nghiệm phân biệt thì đường thẳng y=m+2 phải cắt đồ thị hàm số y=f(x) tại 4 điểm phân biệt.
Dựa vào đồ thị ta được -4<m+2<-3 => -6<m<-5
Đáp án C.
- Lấy đối xứng phần đồ thị hàm số y = f(x) nằm phía dưới trục hoành lên phía trên trục hoành ta được đồ thị hàm số y = |f(x)| (như hình bên). - Số nghiệm của phương trình |f(x)| = m là số giao điểm của đồ thị hàm số y = |f(x)| với đường thẳng y = m. Phương trình |f(x)| = m có 6 nghiệm thực phân biệt ⇔ 1 < m < 2.
+ Trước tiên từ đồ thị hàm số y= f( x) , ta suy ra đồ thị hàm số y = |f(x)| như hình dưới đây:
Phương trình 2|f(x)| - m = 0 hay |f(x)| = m/2 là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x) và đường thẳng y= m/2.
Dựa vào đồ thị hàm số y = |f(x)|, ta có ycbt trở thành:
Chọn A.
Đáp án A
Dựa vào đồ thị hàm số y = f x , để phương trình f x = m có 2 nghiệm phân biệt ⇔ m > 5 0 < m < 1
Đáp án D
Đồ thị hàm số y = f x đối xứng với đồ thị hình vẽ qua trục hoành
Phương trình f x = m có 6 nghiệm thực phân biệt khi 3 < m < 4
Đáp án D
Phương pháp:
Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m
Cách giải:
Từ đồ thị hàm số y = f(x) ta có đồ thị hàm số y = |f(x)| như hình bên:
Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m
⇒ Để phương trình |f(x)| = m có 4 nghiệm phân biệt thì 1 < m < 3
Chọn B