B Cho 4 số không âm a, b, c, d thoả mãn a + b + c + d = 1. Chứng minh:
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+d}+\sqrt{d+a}\le2\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 4 căn thức lần lượt là \(\left(x;y;z;t\right)\)
\(\Rightarrow x^2+y^2+z^2+t^2=3\)
Ta cần chứng minh: \(x+y+z+t\le2\sqrt{3}\)
Áp dụng BĐT Bunhiacopxki:
\(\left(x+y+z+t\right)^2\le\left(1+1+1+1\right)\left(x^2+y^2+z^2+t^2\right)=12\)
\(\Rightarrow x+y+z+t\le2\sqrt{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)
P/s: việc đặt chỉ để viết cho ngắn, còn thực chất bạn áp dụng luôn Buniacopxki cho 1 dòng cũng được
\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)
=> VT >/ 2
Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)
\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)
\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)
Dấu '' = '' xảy ra khi a = b + c+ d
b = c+d+a
c = b+a+d
d = a+b+c
Hình như ko có a ; b; c ;d
Bài này giải được!
(Lớp 7)
Áp dụng BĐT Bunhiacopxki cho 4 số ta có:
\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+d}+1.\sqrt{d+a}\right)^2\le\left(1^2+1^2+1^2+1^2\right)\left(2\left(a+b+c+d\right)\right)=8\)
\(\Rightarrow\)\(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+d}+1.\sqrt{d+a}\le2\sqrt{2}\)
Xảy ra đẳng thức khi \(\frac{1}{\sqrt{a+b}}=\frac{1}{\sqrt{b+c}}=\frac{1}{\sqrt{c+d}}=\frac{1}{\sqrt{d+a}}\)và a + b + c + d = 1 <=> a = b = c = d = 1/4