Tìm 2 số biết hiệu giữa BCNN và UCLN của chúng bằng 18.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi hai số cần tìm là $a,b$.
Gọi $d=ƯCLN(a,b)$ thì đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
$BCNN(a,b)=dxy$
Theo bài ra ta có:
$dxy-d = 18$
$d(xy-1)=18$
$\Rightarrow d$ là ước của $18$
Nếu $d=1$ thì $xy-1=18\Rightarrow xy=19$
$\Rightarrow (x,y)=(19,1), (1,19)$
$\Rightarrow (a,b)=(19,1), (1,19)$
Nếu $d=2$ thì $xy-1=9\Rightarrow xy=10$
$\Rightarrow (x,y)=(1,10), (2,5), (5,2), (10,1)$
$\Rightarrow (a,b)=(2,20), (4,10), (10,4), (20,2)$
Nếu $d=3$ thì $xy-1=6\Rightarrow xy=7$
$\Rightarrow (x,y)=(1,7), (7,1)\Rightarrow (a,b)=(3,21), (21,3)$
Nếu $d=6$ thì $xy-1=3\Rightarrow xy=4$
$\Rightarrow (x,y)=(1,4), (4,1)$
$\Rightarrow (a,b)=(6,24), (24,6)$
Nếu $d=9$ thì $xy-1=2\Rightarrow xy=3$
$\Rightarrow (x,y)=(1,3), (3,1)\Rightarrow (a,b)=(3,27), (27,3)$
Nếu $d=18$ thì $xy-1=1\Rightarrow xy=2$
$\Rightarrow (x,y)=(1,2), (2,1)$
$\Rightarrow (a,b)=(18,36), (36,18)$
Gọi 2 số cần tìm là a,b
bcnn ( a,b) =6 nhân ưcln (a,b) =6*12=72
ta có bcnn(a,b) nhân ưcln (a,b) =a*b
suy ra 72*12=24*b suy ra b= 36
vậy 2 số cần tìm là a=24 ,b=36