Cho hình chóp S . A B C D có đáy A B C D là hình vuông cạnh a , cạnh bên S A vuông góc với mặt phẳng đáy, góc giữa mặt phẳng S B C và mặt phẳng đáy bằng 60 0 . Khoảng cách từ D đến mặt phẳng S B C bằng
A. a 6 4
B. a 2
C. a 3 2
D. a 15 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi H là trung điểm của AD, khi đó từ giả thiết ta có SH ⊥ (ABCD). Ta có:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Chọn đáp án D
Gọi H là trung điểm của AB. Từ giả thiết ta có S H ⊥ A B C D
Suy ra
⇒ S H C vuông cân tại H.
Do ∆ B H C vuông tại H nên
⇒ S H = H C = a 5 2
Thể tích khối chóp V S . A B C D = 1 3 S H . S A B C D = a 3 5 6 đ v t t là
Chọn D
Gọi H là trung điểm của AB.
Do đó:
Xét tam giác vuông BHC:
Xét tam giác vuông SHC:
Suy ra:
Chọn C