Cho tứ diện ABCD có OA, OB, OC đôi một vuông góc với nhau và OA=OB=2OC. Gọi G là trọng tâm tam giác ABC. Góc giữa hai đường thẳng OG và AB bằng
A. 75°
B. 60°
C. 45°
D. 90°
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cau 33:
\(\left|\overrightarrow{u}-\overrightarrow{v}\right|=\sqrt{\left(\overrightarrow{u}-\overrightarrow{v}\right)^2}=\sqrt{u^2+v^2-2\cdot u\cdot v\cdot cos120}\)
\(=\sqrt{4^2+3^2-2\cdot4\cdot3\cdot\dfrac{-1}{2}}=\sqrt{37}\)
Qua B kẻ đường thẳng song song OM cắt OC kéo dài tại D
\(\Rightarrow OM||\left(ABD\right)\Rightarrow d\left(OM;AB\right)=d\left(OM;\left(ABD\right)\right)=d\left(O;\left(ABD\right)\right)\)
Gọi E là trung điểm BD, từ O kẻ \(OH\perp AE\)
\(BD||OM\) và M là trung điểm BC\(\Rightarrow OM\) là đường trung bình tam giác BCD
\(\Rightarrow BD=2OM=BC\Rightarrow\Delta BCD\) vuông cân tại B
O là trung điểm CD (do OM là đường trung bình BCD), E là trung điểm BD
\(\Rightarrow OE\) là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=\dfrac{a\sqrt{2}}{2}\\OE||BC\Rightarrow OE\perp BD\end{matrix}\right.\)
\(\left\{{}\begin{matrix}OA\perp OB\\OA\perp OC\end{matrix}\right.\) \(\Rightarrow OA\perp\left(OBC\right)\Rightarrow OA\perp BD\)
\(\Rightarrow BD\perp\left(OAE\right)\Rightarrow BD\perp OH\)
\(\Rightarrow OH\perp\left(ABD\right)\Rightarrow OH=d\left(O;\left(ABD\right)\right)\)
Áp dụng hệ thức lượng trong tam giác vuông OAE:
\(OH=\dfrac{OA.OE}{AE}=\dfrac{OA.OE}{\sqrt{OA^2+OE^2}}=\dfrac{a\sqrt{3}}{3}\)
\(AB=\sqrt{OA^2+OB^2}=OA\sqrt{1+k^2}\)
\(OM=BM=\dfrac{1}{2}AB=\dfrac{OA}{2}\sqrt{1+k^2}\)
\(cos\widehat{OMB}=cos60^0=\dfrac{OM^2+BM^2-OB^2}{2OM.BM}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{OA^2\left(\dfrac{k^2+1}{4}\right)+OA^2\left(\dfrac{k^2+1}{4}\right)-k^2OA^2}{2.OA^2\left(\dfrac{k^2+1}{4}\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1-k^2}{1+k^2}=\dfrac{1}{2}\Rightarrow k^2=\dfrac{1}{3}\Rightarrow k=\dfrac{1}{\sqrt{3}}\)
Đáp án C.
Do OA,OB,OC đội một vuông góc với nhau và O A = O B = O C nên tam giác ABC là tam giác đều. Qua M kẻ đường thẳng song song với AB cắt AC tại N
Ta có M N / / A B ⇒ O M , A B = O M , M N ^ ^
Giả sử O A = O B = O C = a ⇒ A B = B C = C A = a 2
Ta có O M = B C 2 = a 2 2 , O N = A C 2 = a 2 2 , M N = A B 2 = a 2 2
⇒ Δ A B C là tam giác đều ⇒ O M N ^ = 60 0
⇒ O M , M N ^ = 60 0 .
Chọn D.
Ta có G là trọng tâm tam giác ABC