Cho tam giác ABC và M là trung điểm BC. Phân tích vec tơ AM theo vec tơ BA và vec tơ CA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do BN là trung tuyến
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\\\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BC}\\2\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{BC}\end{matrix}\right.\)
Cộng vế với vế:
\(\overrightarrow{AM}+2\overrightarrow{BN}=\dfrac{3}{2}\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{BC}=\dfrac{2}{3}\overrightarrow{AM}+\dfrac{4}{3}\overrightarrow{BN}\)
Ta có:
Theo quy tắc ba điểm ta có:
Lấy (1) trừ 3 lần (2) ta được:
+ K là trung điểm của BC nên ta có:
+ M là trung điểm AC nên ta có:
+ Lại có
Cộng (1) với (3) ta được ,
kết hợp với (2) ta được hệ phương trình:
Giải hệ phương trình ta được