K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

18 tháng 11 2019

30 tháng 12 2019

Chọn A

Gọi u1,u2,u3,u4 là 4 số hạng đầu tiên của cấp số nhân, với công bội q. gọi (vn) là cấp số cộng tương ứng với công sai là d. Theo giả thuyết Ta có:

u 1 + u 2 + u 3 = 16 4 9 u 1 = v 1 u 2 = v 4 = v 1 + 3 d u 3 = v 8 = v 1 + 7 d ⇔ u 1 + u 1 q + u 2 q 2 = 16 4 9    1 u 1 q = u 1 + 3 d                        2 u 1 q 2 = u 1 + 7 d                     3

Khử d từ (2) và (3) ta thu được: 

7 u 1 q = 7 u 1 + 21 d 3 u 1 q 2 = 3 u 1 + 21 d

Lấy vế trừ vế ta thu được 

7 u 1 q − 3 u 1 q 2 = 4 u 1 ⇔ u 1 . 3 q 2 − 7 q + 4 = 0 ⇔ u 1 = 0 3 q 2 − 7 q + 4 = 0

Do  u 1 ≠ 0 ⇒ q = 1 q = 4 3

Theo định nghĩa cấp số nhận thì q ≠ 1 . Do đó  q = 4 3

Thay q = 4 3 vào (1) ta được  u 1 = 4

23 tháng 12 2016

ta có : U1

U2=U1.q

...

=> S3=U1(1+q+q2)=...........

11 tháng 7 2018

Đáp án D

Phương pháp:

Sử dụng công thức tổng quát của CSC  và tính chất của CSN 

Cách giải:

a, b, c lần lượt là số thứ nhất, thứ tư và thứ tám của một cấp số cộng công sai là  s ≠ 0

nên ta có  a, b, c  theo thứ tự tạo thành một cấp số nhân với công bội khác 1 nên ta có

2 tháng 1 2017

Chọn C

Gọi ba số đó lần lượt là x,y,z

Do ba số là các số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng nên ta có liên hệ:  y = x + 7 d ,   z = x + 42 (với d là công sai của cấp số cộng)

Theo giả thiết ta có:  x + y + z   = x + x + 7 d + x + 42 d   = 3 x + 49 d   = 217

Mặt khác do x,y,z là các số hạng liên tiếp của một cấp số nhân nên

26 tháng 12 2017

Đáp án C

16 tháng 9 2018

Chọn B

Giả sử ba số hạng a,  b, c lập thành cấp số cộng thỏa yêu cầu, khi đó b, a, c theo thứ tự đó lập thành cấp số nhân  công bội q. Ta có

a + c = 2 b a = b q ;   c = b q 2 ⇒ b q + b q 2 = 2 b ⇔ b = 0 q 2 + q − 2 = 0 .  

     Nếu  b = 0 ⇒ a = b = c = 0  nên a, b, c là cấp số cộng công sai d= 0 (vô lí).

     Nếu q 2 + q − 2 = 0 ⇔ q = 1  hoặc  q= -2. Nếu q = 1 ⇒ a = b = c  (vô lí), do đó q = -2.

17 tháng 9 2023

Gọi công bội của cấp số nhân là q => b=a.q; c=a.q^2 

Gọi công sai của cấp số cộng là d => b=a+2d; c=a+8d

Ta có:  a.q=a+2d => \(q=\dfrac{a+2d}{a}=1+2\dfrac{d}{a}\)

           \(a.q^2=a+8d\Rightarrow q^2=\dfrac{a+8d}{a}=1+8\dfrac{d}{a}\)

Suy ra \(\left(1+2\dfrac{d}{a}\right)^2=1+8\dfrac{d}{a}\Rightarrow\dfrac{d}{a}=1\left(d\ne0\right)\)

=> b=a+2a=3a; c=a+8a=9a
Theo bài ra a+b+c=26 => a+3a+9a=13a=26 => a=2; b=6; c=18

Vậy ba số cần tìm là a=2; b=6; c=18

 

22 tháng 8 2017

Gọi ba số đã cho u1,u2,u7 theo thứ tự là ba số của một cấp số cộng (un) và v1,v2, v3 của cấp số nhân (vn) . Theo giả thiết Ta có hệ:

Giải phương trình (6)

( 6 ) ⇔ u 1 q − 1 = 1 6 u 1 q − 1 q + 1 ⇔ u 1 q − 1 = 0 ​  ( l o a i ) 1 = 1 6 q + 1

Thay vào (*), ta được

u 1 1 + 5 + 5 2 = 93 ⇔ u 1 = 3 = v 1

Suy ra

u 2 = u 1 . q = 3.5 = 15 = v 2 u 3 = u 1 . q 2 = 3.25 = 75 = v 3

 

Vậy tích ba số  v 1 . v 2 . v 3 = 3.15.75 = 3375

Đáp án A