K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

22 tháng 10 2019

Đáp án D

Chon 3 số bất kì có C 10 3   =   120  cách

TH1: 3 số chọn ra là 3 số tự nhiên liên tiếp có 8 cách

TH2: 3 số chọn ra là 2 số tự nhiên liên tiếp

+) 3 số chọn ra có cặp (1;2) hoặc (9;10) có 2.7 = 14 cách

+) 3 số chọn ra có cặp ( 2 ; 3 ) ;   ( 3 ; 4 ) ; . . . . ( 8 ; 9 )  có 6.6 = 36 cách

Vậy xác suất cần tìm là

NV
18 tháng 3 2021

"Một số lẻ chữ số 1 và 1 số chẵn chữ số 2" nghĩa là sao nhỉ?

Bạn có thể ghi 1 cách chính xác tuyệt đối đề bài không?

a: n(omega)=4

n(A)=4

=>P=4/4=1

b:  n(omega)=4

n(A)=1; A={5}

=>P(A)=1/4

26 tháng 10 2019

NV
22 tháng 12 2020

a. Không gian mẫu: \(C_{10}^3\)

Số cách chọn 3 số nguyên liên tiếp: 8 cách (123; 234;...;8910)

Số cách chọn ra 3 số trong đó có đúng 2 số nguyên liên tiếp:

- Cặp liên tiếp là 12 hoặc 910 (2 cách): số còn lại có 7 cách chọn

- Cặp liên tiếp là 1 trong 7 cặp còn lại: số còn lại có 6 cách chọn

Vậy có: \(C_{10}^3-\left(8+2.7+7.6\right)=56\) bộ thỏa mãn

Xác suất: \(P=\dfrac{56}{C_{10}^3}=...\)

b.

Có 2 số chia hết cho 4 là 4 và 8

Rút ra k thẻ: \(C_{10}^k\) cách

Số cách để trong k thẻ có ít nhất 1 thẻ chia hết cho 4: \(C_{10}^k-C_8^k\)

Xác suất thỏa mãn: \(P=\dfrac{C_{10}^k-C_8^k}{C_{10}^k}>\dfrac{13}{15}\)

\(\Leftrightarrow\dfrac{2}{15}>\dfrac{C_8^k}{C_{10}^k}=\dfrac{\dfrac{8!}{k!\left(8-k\right)!}}{\dfrac{10!}{k!\left(10-k\right)!}}=\dfrac{\left(9-k\right)\left(10-k\right)}{90}\)

\(\Leftrightarrow\left(9-k\right)\left(10-k\right)-12< 0\Leftrightarrow k^2-19k+78< 0\)

\(\Rightarrow6< k< 13\)

17 tháng 5 2019

Chọn đáp án B.

16 tháng 5 2017
14 tháng 6 2017

Đáp án là C