K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

9 tháng 3 2017

30 tháng 8 2015

1 ) ( x^2 + 1 )( x^2 + 5 ) = 0 

=> x^2 + 1 = 0 hoặc x^2 + 5 = 0 

=> x^2 = -1 hoặc x^2 = -5 ( loại vì  x^2 >= 0 ) 

2) =>20x^2 - 4x + 20x - 20x^2 = 16 

=> 16x = 16 

=> x = 1 

3) ( 100 -a )( 100- b ) = 10000 - 100b - 100a - ab 

                                = 100 ( 100 -a - b ) - ab 

=> x = -1 

3 tháng 8 2017

sai

đọc kĩ đề bài 1 đi

số giá trị của x!

vậy9 kết quả phải là 0 vì x ko có kết quả nào thõa mản dk trên

Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên \(R\) và thoả mãn \(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{f\left(x\right)}{f’\left(x\right)}dx=\int\limits^1_0\frac{\left(f\left(x\right)\right)^2}{xf\left(x\right)}dx=6\int\limits^{\frac{3}{2}}_{\frac{1}{2}}\left(f\left(x\right)\right)^2-f’\left(x\right)dx\) Khi này tính \(f\left(cos\left(f\left(\pi\right)\right)\right)+f‘\left(x\right)\) bằng: a) 0 b) 1 c) 2 d) -1 Câu 2: Cho cấp số cộng...
Đọc tiếp

Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên \(R\) và thoả mãn \(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{f\left(x\right)}{f’\left(x\right)}dx=\int\limits^1_0\frac{\left(f\left(x\right)\right)^2}{xf\left(x\right)}dx=6\int\limits^{\frac{3}{2}}_{\frac{1}{2}}\left(f\left(x\right)\right)^2-f’\left(x\right)dx\)
Khi này tính \(f\left(cos\left(f\left(\pi\right)\right)\right)+f‘\left(x\right)\) bằng:

a) 0

b) 1

c) 2

d) -1

Câu 2: Cho cấp số cộng có \(u_1=2\)\(u_7=23\) .

a) Xác định công thức tổng quát của cấp số cộng trên

b) Tính \(S=u_1+\left(u_2+u_4+u_6+...+u_{20}\right)\)

c) Cho \(u_5+u_6+...+u_{12}=u_{24}+u_{26}+...+u_{40}-m\)Tìm giá trị \(m\) theo các số hạng của cấp số cộng trên.
Câu 3: Một số điện thoại của công ty A có dạng \(1900abcxyz\). Hỏi xác suất là bao nhiêu để thoả mãn các trường hợp sau:

TH1: số \(a,b,c\) lập thành một cấp số cộng với công sai là 4 và chia hết cho 3 và thoả mãn tổng ba số \(x,y,z\) lớn hơn tổng \(a,b,c\) 2 đơn vị và chia hết 2.

TH2: Các chữ số thoả mãn \(x+a=y+b=z+c\)
TH3: Các chữ số thoả mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và đôi một khác nhau

TH4: Các chữ số thoả mản \(x.y.z=a.b.c\) và đôi một khác nhau

0