Cho AMNP vuông tại M. Kẻ MK ⊥ NP (K ∈ NP). Tia phân giác của góc PMK cắt NP tại I. Chứng minh NM = NI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)
Vì MI là tia phân giác \(\widehat{KMP}\)
=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)
=> Tam giác NMI cân tại N
=> NM = NI ( đpcm )
\(\widehat{KIM}+\widehat{KMI}=90^o\)(hai góc phụ nhau)
\(\widehat{IMN}+\widehat{IMP}=90^o\)(hai góc phụ nhau)
\(\widehat{KMI}=\widehat{IMP}\)(vì \(MI\)là tia phân giác của \(\widehat{PMK}\))
Suy ra \(\widehat{IMN}=\widehat{KIM}\).
Xét tam giác \(NIM\)có \(\widehat{IMN}=\widehat{KIM}\)(cmt)
suy ra \(\Delta NIM\)cân tại \(N\)
suy ra \(NI=NM\).
a: Xét ΔMNK và ΔMIK có
MN=MI
góc NMK=góc IMK
MK chung
=>ΔMNK=ΔMIK
=>KN=KI
=>ΔKNI cân tại K
b: ΔMNK=ΔMIK
=>góc MIK=góc MNK=90 độ
b: Xét ΔMEP có
EI,PN là đường cao
EI cắt PN tại K
=>K là trực tâm
=>MK vuông góc EP
1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔNMI=ΔNKI
Suy ra: NM=NK
hay ΔNMK cân tại N
2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có
IM=IK
\(\widehat{MIQ}=\widehat{KIP}\)
Do đó: ΔMIQ=ΔKIP
Suy ra: MQ=KP
Ta có: NM+MQ=NQ
NK+KP=NP
mà NM=NK
và MQ=KP
nên NQ=NP
hayΔNQP cân tại N
3: Xét ΔNQP có
NM/MQ=NK/KP
nên MK//QP
a: Xét ΔNMI vuông tại M và ΔNKI vuông tại K co
NI chung
góc MNI=góc KNI
=>ΔNMI=ΔNKI
b: Xet ΔIMA vuông tại M và ΔIKP vuông tại K có
IM=IK
góc MIA=góc KIP
=>ΔIMA=ΔIKP
=>KI=IM
=>KI<IA