K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

* Ta có u 1 = 9 1 − 1 = 8  chia hết cho 8 (đúng với n = 1).

* Giả sử u k = 9 k − 1 chia hết cho 8.

Ta cần chứng minh u k + 1 = 9 k + 1 − 1  chia hết cho 8.

Thật vậy, ta có u k + 1 = 9 k + 1 − 1 = 9.9 k − 1 = 9 9 k − 1 + 8 = 9 u k + 8 .

Vì 9 u k và 8 đều chia hết cho 8, nên u k + 1 cũng chia hết cho 8.

Vậy với mọi số nguyên dương n thì u n chia hết cho 8.

2 tháng 11 2021

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

26 tháng 10 2018

áp dụng định lí fecma nhé bạn

26 tháng 10 2018

Theo định lí Fecma nhỏ,ta có:\(n^5-n\equiv0\left(mod5\right)\)

Do vậy \(n^5-n⋮5^{\left(đpcm\right)}\)

~ Học tốt nha bạn~

21 tháng 6 2021

Ta có:

`13^n-1(n in NN^**)`

`=(13-1)(13^{n-1}+........+1)`

`=12..... vdots 12`

8 tháng 4 2019

Lời giải. Bước cơ sở: Với n = 1, ta có S1 = 1 + 1 = 2 chia hết cho 21 = 2. Bước quy nạp: Giả sử mệnh đề đúng với n = k, nghĩa là Sk = (k + 1)(k + 2) ...(k + k) chia hết cho 2k , ta phải chứng minh mệnh đề đúng với n = k + 1. Thật vậy, Sk+1 = (k + 2)(k + 3) ...[(k+1) + (k+1)]= 2(k + 1)(k + 2)...(k + k) = 2Sk. Theo giả thiết quy nạp Sk chia hết cho 2k , suy ra Sk+1 chia hết cho 2k+1. Theo nguyên lí quy nạp toán học Sn chia hết 2n với mọi n nguyên dương.  

20 tháng 7 2019

Thử ha! Lâu không làm quên mất cách làm rồi má ơi:((

Giả sử \(n^k⋮n-1\left(1\right)\Rightarrow n⋮n-1\) Vì:

Nếu n không chia hết cho n - 1 thì khi phân tích ra thừa số nguyên tố, n không chứa n - 1 nên nk cũng không chưa thừa số nguyên tố n - 1 suy ra nk không chia hết cho n - 1. Mâu thuẫn với điều giả sử (1)

Vậy \(n⋮n-1\Leftrightarrow\left(n-1\right)+1⋮\left(n-1\right)\Rightarrow1⋮\left(n-1\right)\)

Suy ra \(n-1\inƯ\left(1\right)=1\left(\text{không xét }-1\text{ vì n\ge3 nên }n-1\text{dương. Do vậy ta chỉ xét ước dương}\right)\Rightarrow n=2\)

Mà n = 2 không thỏa mãn đk nên không tồn tại n > 3 thỏa mãn n chia hết cho n - 1 tức là không tồn tại nk chia hết cho n - 1 (mẫu thuẩn với điều giả sử)

Do vậy ta có đpcm.

P/s: Sai thì thôi nhá, quên mất cách làm mọe rồi

3 tháng 11 2019

nk-1=(n-1)(nk-1-nk-2....+1) chia hết cho n-1