Cho hình bình hành ABCD có góc A nhọn. Gọi I, K là hình chiếu của B, D trên đường chéo AC. Gọi M, N là hình chiếu của C trên các đường thẳng AB, AD. Chứng minh:
a, AK = IC
b, Tứ giác BIDK là hình bình hành
c, AC2 = AD. AN + AB.AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Dễ chứng minh: Tam giác ADK đồng dạng với tam giác ACN (g - g)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AK}{AN}\)
=> AD.AN = AC.AK (1)
Dễ chứng minh: Tam giác ABI đồng dạng với tam giác ACM (g - g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AI}{AM}\)
=> AB.AM = AC.AI (2)
Từ (1) và (2)
=> AD.AN + AB.AM = AC.AK + AC.AI = AC.(AK + AI) = AC. (AK + IK + AI) = AC.(AK + IK + IC) = AC^2
c) Xét và có:
chung
(g.g)
(hai cạnh tương ứng tỉ lệ)
(1)
Xét và có:
chung
(g.g)
(hai cạnh tương ứng bằng nhau)
(2)
Ta có OE=OF (suy ra từ câu a)
OA=OC (tính chất hình bình hành)
hay (3)
Từ (1), (2) và (3) suy ra
(đpcm)
Xét\(\Delta AEB\)và\(\Delta AHCC\)có:
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{AHC}=90^o\)
\(\Rightarrow\Delta ABE~\Delta AHC\left(g.g\right)\)
\(\Rightarrow\frac{AE}{AH}=\frac{AB}{AC}\)(hai cạnh tương ứng tỉ lệ)
\(\Rightarrow AE.AC=AB.AH\left(1\right)\)
Xét \(\Delta AFD\)và \(\Delta AKC\)có:
\(\widehat{A}\) chung
\(\widehat{AFD}=\widehat{AKC}=90^o\)
\(\Rightarrow\Delta AFD=\Delta AKC\left(g.g\right)\)
\(\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\)(hai cạnh tương ứng bằng nhau)
\(\Rightarrow AF.AC=AK.AD\left(2\right)\)
Ta có \(OE=OF\) (suy ra từ \(\Delta OEB=\Delta OFD\)trong câu a)
\(OA=OC\)(tính chất hình bình hành)
\(\Rightarrow OA-OE=OC-OF\)hay \(AE=FC\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(AB.AH+AK.AD=AE.AC+AF.AC\)
\(=AC\left(AE+AF\right)+AC\left(FC+AF\right)=AC^2\)(đpcm)
......phần kia lỗi....
a) \(\widehat{FAD}=\widehat{BEC}=90^0;\widehat{DAF}=\widehat{ECB};AD=BC\)
\(\Rightarrow\)△ADF=△CBE (g-c-g) \(\Rightarrow DF=BE\)
DF//BE (cùng vuông góc với AC) \(\Rightarrow\)BEDF là hình bình hành.
b) \(CH.CD=CH.AB=S_{ABCD}=CK.CD=CK.BC\)
c) △ABE∼△ACH (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{CH}\Rightarrow AB.CH=AC.BE\)
△BEC∼△CKA \(\Rightarrow\dfrac{BC}{CA}=\dfrac{EC}{AK}\Rightarrow BC.AK=AC.EC\)
\(AB.CH+BC.AK=AB.CH+AD.AK=AC.BE+AC.EC=AC.\left(BE+EC\right)=AC.AC=AC^2\)
a:Gọi O là giao của AC và BD
=>O là trung điểm chung của AC và BD
Xét ΔOEB vuông tạiE và ΔOFD vuông tại F có
OB=OD
góc BOE=góc DOF
=>ΔOEB=ΔOFD
=>BE=DF
mà BE//DF
nên BEDF là hình bình hành
b: Xét ΔCHB vuông tại H và ΔCKD vuông tại K có
góc CBH=góc CDK
=>ΔCHB đồng dạng với ΔCKD
=>CH/CK=CB/CD
=>CH*CD=CK*CB
a, HS tự chứng minh
b, HS tự chứng minh
c, Chú ý ∆AKD:∆ANC (g.g) và ∆ABI:∆ACM (g.g). Từ đó tính được AD.AN và AB.AM