Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
A. 0
B. 2
C. Vô số
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau
8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia
Đáp án D
a và b chéo nhau. Có duy nhất một mặt phẳng chứa a và song song với b vì có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau.
Đáp án D
a và b chéo nhau. Có duy nhất một mặt phẳng chứa a và song song với b vì có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau.
a) (Q) cắt (P) theo giao tuyến b suy ra b thuộc (Q).
Do đó a và b không thể chéo nhau.
b) Vì a // (P) và b thuộc (P) suy ra a và b không thể cắt nhau.
Chọn đáp án C
Lấy điểm M trên a, qua M kẻ đường thẳng b' song song với b. Khi đó mặt phẳng (a;b') song song với b.
Nếu có một mặt phẳng (P) khác (a;b') chứa a mà song song với b khi đó P ∩ a ; b ' = a phải song song với b. Mâu thuẩn a, b chéo nhau. Vậy có duy nhất một mặt phẳng chứa a và song song với b.