Cho tập hợp . Gọi là tập hợp các số tự nhiên có 4 chữ số lập từ các chữ số thuộc tập . Chọn ngẫu nhiên một số từ , xác suất để số được chọn chia hết cho bằng
A. 9 28
B. 4 27
C. 4 9
D. 1 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập S có 9 4 phần tử. Ta có
Thật vậy: Gọi số thỏa mãn biến cố là
Đáp án A
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ chia hết cho 6 ⇒ d = { 2 ; 4 ; 6 ; 8 } a + b + c + d : 3 .
Khi đó, chọn d có 4 cách chọn; b và c đều có 9 cách chọn (từ 1 → 9 )
Nếu b + c + d:3 thì a = {3;6;9} ⇒ có 3 cách chọn a
Nếu b + c + d chia 3 dư 1 thì a = {2;5;8} ⇒ có 3 cách chọn a
Nếu b + c + d chia 3 dư 2 thì a = {1;4;7} ⇒ có 3 cách chọn a
Suy ra a chỉ có 3 cách chọn ⇒ có 4.9.9.3 = 972 số chia hết cho 6
Vậy xác suất cần tính là P = 972 9 4 = 4 27 .
Đáp án A.
Gọi số cần tìm có dạng a b c d vì chia hết cho 6
⇒ d = { 2 , 4 , 6 , 8 } a + b + c + d : 3
Khi đó, chọn d có 4 cách chọn, b và c đều có 9 cách chọn (từ 1 → 9).
+) Nếu a + b + c + d : 3 thì a = {3,6,9} => có 3 cách chọn a.
+) Nếu a + b + c + d : 3 dư 1 thì a = {2,5,8} => có 3 cách chọn a.
+) Nếu a + b + c + d : 3 dư 2 thì a = {1,4,7} => có 3 cách chọn a.
Suy ra a chỉ có 3 cách chọn => có 4.9.9.3 = 972 số chia hết cho 6.
Vậy xác suất cần tính là P = 972 9 4 = 4 27 .
Đáp án A.
Gọi số cần tìm có dạng a b c d vì chia hết cho 6
Khi đó, chọn d có 4 cách chọn, b và c đều có 9 cách chọn (từ 1→9).
· Nếu a + b + c + d : 3 thì a = {3,6,9} => có 3 cách chọn a.
· Nếu a + b + c + d : 3 dư 1 thì a = {2,5,8} => có 3 cách chọn a.
· Nếu a + b + c + d : 3 dư 2 thì a = {1,4,7} => có 3 cách chọn a.
Suy ra a chỉ có 3 cách chọn => có 4.9.9.3 = 972 số chia hết cho 6.
Vậy xác suất cần tính là
Gọi là biến cố: Chọn được 1 số chia hết cho 6 từ tập hợp S”
Số chia hết cho 6 có dạng:
Chọn A
+ Ta có
Ta có d có 4 cách chọn {2;4;6;8}, a có 9 cách chọn, b có 9 cách chọn. Vì a + b + d khi chia cho 3 có 3 khả năng số dư
{0;1;2}, mà nên c có 3 cách chọn.
Ta có:
Xác suất cần tìm là: