Hàm số y = ln ( x + 2 ) + 3 x + 2 đồng biến trên khoảng nào sau đây?
A. - ∞ ; 1
B. 1 ; + ∞
C. 1 2 ; 1
D. - 1 2 ; + ∞
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)
Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)
2.
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)
Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)
Chọn D. Bởi vì hàm số ln x luôn luôn dương nên chắc chắn sẽ đồng biến trên TXĐ của nó
Đáp án B
Phương pháp:
Hàm số y = f(x) đồng biến (nghịch biến) trên (a;b) khi và chỉ khi và f’(x) = 0tại hữu hạn điểm.
Cách giải:
Quan sát bảng biến thiên, ta thấy: hàm số y = f(x) đồng biến trên khoảng (0;2). Do Hàm số y = f(x) đồng biến trên khoảng (0;1)
Đáp án B
Ta có: D = - 2 ; + ∞ và y ' = 1 x + 2 - 3 x + 2 2 = x - 1 x + 2 2 > 0 ⇔ x > 1
Do đó hàm số đã cho đồng biến trên khoảng 1 ; + ∞ .