Chứng minh rằng S = 3 + 3 2 + 3 3 + ... + 3 9 chia hết cho -39
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của S:
9 - 0 + 1 = 10 (số)
Do 10 ⋮ 2 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 2 số hạng như sau:
S = (1 + 3) + (3² + 3³) + ... + (3⁸ + 3⁹)
= 4 + 3².(1 + 3) + ... + 3⁸.(1 + 3)
= 4 + 3².4 + ... + 3⁸.4
= 4.(1 + 3² + ... + 3⁸) ⋮ 4
Vậy S ⋮ 4
\(A,\)\(S=\left(3+3^2\right)+\left(3+3^2\right)3^2+...+\left(3+3^2\right)3^{2018} \)
\(\Rightarrow S=9\left(1+3^2+...+3^{2018}\right)\)
\(\Rightarrow S⋮9\)
\(B,\)\(S=3+3^2+3^3+\left(3+3^2+3^3\right)3^3+...\left(3+3^2+3^3\right)3^{2017}\)
\(S=39+39.3^3+...+39.3^{2017}\)
Nhưng xét lại thì thấy 2017 không chia hết cho 3 nên câu b có lẽ sai đề =)))))
\(C,\)\(S=\left(1+3+3^2+3^3\right).3+\left(1+3+3^2+3^3\right).3^4+...+\left(1+3+3^2+3^3\right).3^{2017}\)
\(S=40.3+40.3^4+...+40.3^{2017}\)
\(Vậy...\)
Ta có : S = 3 + 32 + 33 + ... + 31998
S = (3 + 32 + 33) + ... + (31996 + 31997 + 31998)
S = 39 + ... + 31995(3 + 32 + 33)
S = 39 + ... + 31995.39
S = 39.(1 + ... + 31995) \(⋮\)39
\(S=3+3^2+3^3+3^4+...+3^9\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
\(S=3\left(1+3+9\right)+3^4\left(1+3+9\right)+3^7\left(1+3+9\right)\)
\(S=3\cdot13+3^4\cdot13+3^7\cdot13\)
\(S=13\left(3+3^4+3^7\right)\)
\(S=13\cdot3\left(1+3^3+3^6\right)\)
\(S=39\cdot\left(1+3^3+3^6\right)\)
\(\Rightarrow S\) ⋮ 39
Để chứng minh rằng s = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 7 + 3 mũ 8 + 3 mũ 9 chia hết cho (-39), ta sử dụng công thức tổng cấp số cộng:
S = a(1-r^n)/(1-r)
Trong đó:
S là tổng của cấp số cộng
a là số hạng đầu tiên của cấp số cộng
r là công bội của cấp số cộng
n là số lượng số hạng trong cấp số cộng
Áp dụng công thức trên, ta có:
a = 3
r = 3
n = 9
S = 3(1-3^9)/(1-3) = 29,523
Ta thấy rằng S không chia hết cho (-39), do đó giả thiết ban đầu là sai.
\(S=3+3^2+3^3+...+3^{1998}\)
\(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(S=12+3^2\cdot\left(3+3^2\right)+...+3^{1996}\cdot\left(3+3^2\right)\)
\(S=12\cdot1+12\cdot3^2+...+12\cdot3^{1996}\)
\(S=12\cdot\left(1+3^2+...+3^{1996}\right)⋮12\)
b, tương tự nhưng nhóm 3 số hạng
Bài ở đâu đấy Ly, k cho tớ đi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 39 + 3 3 . 39 + 3 6 . 39 = 39. 1 + 3 3 + 3 6 ⋮ − 39
Vậy S chia hết cho -39