K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Đáp án C

=> SA = AB = a

11 tháng 1 2017

Đáp án C

Hạ  A H ⊥ S B ⇒ A H ⊥ S B C

S B C ; A B C D = A H ; S A = ∠ S A H = 45 0 ⇒ S A = A B = a S C D M N = S A B C D − S A N M − S B N M = a 2 − 1 2 a 2 a 2 − 1 2 a 2 a = 5 a 2 8 V S . C D M N = 1 3 S A . S C D M N = 1 3 a 5 a 2 8 = 5 a 3 24

7 tháng 10 2017

Chọn C

nên góc giữa mặt phẳng (SBC) và (ABCD) là . Do đó SA = AB tan450 = a

Mặt khác:

 

Vậy:

26 tháng 10 2017

Chọn đáp án C.

Gọi O là tâm của hình vuông ABCD thì  B D ⊥ S A O

27 tháng 6 2019

Đáp án C

9 tháng 11 2017

Chọn C

2 tháng 4 2016

S D C I A K B

\(\begin{cases}\left(SIB\right)\perp\left(ABCD\right)\\\left(SIC\right)\perp\left(ABCD\right)\end{cases}\) \(\Rightarrow SI\perp\left(ABCD\right)\)

Kẻ \(IK\perp BC\left(K\in BC\right)\Rightarrow BC\perp\left(SIK\right)\)\(\Rightarrow\widehat{SKI}=60^0\)

Diện tích hình thang ABCD : \(S_{ABCD}=3a^2\)

Tổng diện tích các tam giá ABI và CDI bằng \(\frac{3a^2}{2}\) Suy ra \(S_{\Delta IBC}=\frac{3a^2}{2}\)

\(BC=\sqrt{\left(AB-CD\right)^2+AD^2}=a\sqrt{5}\)

\(\Rightarrow IK=\frac{2S_{\Delta IBC}}{BC}=\frac{3\sqrt{5}a}{5}\)

\(\Rightarrow SI=IK.\tan\widehat{SKI}=\frac{3\sqrt{15}a}{5}\)

Thể tích của khối chóp S.ABCD : \(V=\frac{1}{3}S_{ABCD}.SI=\frac{3\sqrt{15}a^2}{5}\)

 

27 tháng 8 2018

Đáp án phải là \(\dfrac{3a^3\sqrt{15}}{5}\)

22 tháng 7 2018

Đáp án A

Phương pháp: Xác định góc giữa hai mặt phẳng bằng cách xác định góc giữa hai đường thẳng lần lượt vuông  góc với giao tuyến.

Cách giải:

Kẻ IH ⊥ CD ta có: 

Ta có: 

Gọi E là trung điểm của AB => EC = AD = 2a

7 tháng 12 2017