Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Tính xác suất chọn được số chia hết cho 6
A. 4 27
B. 9 28
C. 6 23
D. 15 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ chia hết cho 6 ⇒ d = { 2 ; 4 ; 6 ; 8 } a + b + c + d : 3 .
Khi đó, chọn d có 4 cách chọn; b và c đều có 9 cách chọn (từ 1 → 9 )
Nếu b + c + d:3 thì a = {3;6;9} ⇒ có 3 cách chọn a
Nếu b + c + d chia 3 dư 1 thì a = {2;5;8} ⇒ có 3 cách chọn a
Nếu b + c + d chia 3 dư 2 thì a = {1;4;7} ⇒ có 3 cách chọn a
Suy ra a chỉ có 3 cách chọn ⇒ có 4.9.9.3 = 972 số chia hết cho 6
Vậy xác suất cần tính là P = 972 9 4 = 4 27 .
Đáp án A.
Gọi số cần tìm có dạng a b c d vì chia hết cho 6
⇒ d = { 2 , 4 , 6 , 8 } a + b + c + d : 3
Khi đó, chọn d có 4 cách chọn, b và c đều có 9 cách chọn (từ 1 → 9).
+) Nếu a + b + c + d : 3 thì a = {3,6,9} => có 3 cách chọn a.
+) Nếu a + b + c + d : 3 dư 1 thì a = {2,5,8} => có 3 cách chọn a.
+) Nếu a + b + c + d : 3 dư 2 thì a = {1,4,7} => có 3 cách chọn a.
Suy ra a chỉ có 3 cách chọn => có 4.9.9.3 = 972 số chia hết cho 6.
Vậy xác suất cần tính là P = 972 9 4 = 4 27 .
Đáp án A.
Gọi số cần tìm có dạng a b c d vì chia hết cho 6
Khi đó, chọn d có 4 cách chọn, b và c đều có 9 cách chọn (từ 1→9).
· Nếu a + b + c + d : 3 thì a = {3,6,9} => có 3 cách chọn a.
· Nếu a + b + c + d : 3 dư 1 thì a = {2,5,8} => có 3 cách chọn a.
· Nếu a + b + c + d : 3 dư 2 thì a = {1,4,7} => có 3 cách chọn a.
Suy ra a chỉ có 3 cách chọn => có 4.9.9.3 = 972 số chia hết cho 6.
Vậy xác suất cần tính là
Gọi là biến cố: Chọn được 1 số chia hết cho 6 từ tập hợp S”
Số chia hết cho 6 có dạng:
Không gian mẫu: \(A_7^3-A_6^2=180\) số
Các trường hợp số chữ số lẻ nhiều hơn số chữ số chẵn là: 3 chữ số đều lẻ, 2 chữ số lẻ 1 số chữ chẵn
- 3 chữ số đều lẻ: \(A_3^3=3\) số
- 2 chữ số lẻ 1 chữ số chẵn: chọn 2 chữ số lẻ từ 3 chữ số lẻ có \(C_3^2=3\) cách
+ Nếu chữ số chẵn là 0 \(\Rightarrow\) \(3!-2!=4\) cách hoán vị 3 chữ số
+ Nếu chữ số chẵn khác 0 \(\Rightarrow\) có 3 cách chọn chữ số chẵn và \(3!\) cách hoán vị các chữ số
\(\Rightarrow3+3.\left(4+3.3!\right)=69\) số
Xác suất: \(P=\dfrac{69}{180}=\dfrac{23}{60}\)
Có \(A_8^5=6720\) số bất kì (kể cả bắt đầu bằng 0)
Do vai trò của các chữ số là như nhau, nên ở mỗi vị trí, mỗi chữ số xuất hiện: \(67220:5=1344\) lần
Ta chọn 1 số làm đại diện tính toán, ví dụ số 3, do số 3 xuất hiện ở các hàng chục ngàn, ngàn, trăm, chục, đơn vị mỗi hàng đều 1344 lần nên tổng giá trị của số 3 là:
\(1344.\left(3.10000+3.1000+3.100+3.10+3.1\right)=1344.11111.3\)
Do vai trò các chữ số là giống nhau nên tổng các chữ số là:
\(S_1=1344.11111.\left(0+3+4+5+6+7+8+9\right)\)
Bây giờ ta lập các số có số 0 đứng đầu, nó đồng nghĩa với việc lập số có 4 chữ số từ các chữ số 3,4,5,6,7,8
Số số lập được là: \(A_7^4=840\) số
Do vai trò các chữ số như nhau nên mỗi vị trí mỗi chữ số xuất hiện \(840:4=210\) lần
Tương tự như trên, ta có tổng trong trường hợp này là:
\(S_2=210.1111.\left(3+4+5+6+7+8+9\right)\)
Giờ lấy \(S_1-S_2\) là được
Đáp án C
Từ 8 số đã cho có thể lập được : số có3 chữ số
Số cần chọn có dạng a b c ¯ trong đó a ≤ b ≤ c
TH1: a < b < c
Chọn ra 3 số thuộc tập 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7
ta được 1 số thỏa mãn
Do đó có C 7 3 = 35 số
TH2:a = b < c có C 7 2 số thỏa mãn
TH3: a < b = c có C 7 2 số thỏa mãn
TH4: a =b = c có C 7 1 số thỏa mãn
Vậy có C 7 3 + 2 C 7 2 + C 7 1 = 84
số thỏa mãn chữ số đứng sau luôn lớn hơn bằng chữ số đứng trước
Vậy xác suất cần tìm là: P = 84 448 = 3 16
Đáp án C
Từ 8 số đã cho có thể lập được : số có3 chữ số.
Số cần chọn có dạng a b c ¯ trong đó a ≤ b ≤ c .
TH1: a < b < c . Chọn ra 3 số thuộc tập 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ta được 1 số thỏa mãn.
Do đó có C 7 3 = 35 số.
TH2: a = b < c có C 7 2 số thỏa mãn.
TH3: a < b = c có C 7 2 số thỏa mãn.
TH4: a = b = c có C 7 1 số thỏa mãn.
Vậy có: C 7 3 + 2 C 7 2 + C 7 1 = 84 số thỏa mãn chữ số đứng sau luôn lớn hơn bằng chữ số đứng trước.
Vậy xác suất cần tìm là: P = 84 448 = 3 16 .
Chọn A
+ Ta có
Ta có d có 4 cách chọn {2;4;6;8}, a có 9 cách chọn, b có 9 cách chọn. Vì a + b + d khi chia cho 3 có 3 khả năng số dư
{0;1;2}, mà nên c có 3 cách chọn.
Ta có:
Xác suất cần tìm là: