Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC), gọi M là điểm thuộc cạnh SC sao cho MC = 2MS. Biết AB = 3, BC = 3 3 . Tính thể tích của khối chóp S.ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp : Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này tới mặt phẳng chứa đường thẳng kia và song song với đường thẳng này.
Cách giải : Qua M dựng đường thẳng song song với AC cắt SA tại E.
Gọi H là trung điểm AB.
Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy nên S H ⊥ A B C
Gọi O là trung điểm của AB
Ta có
Trong tam giác vuông SOC có
Ta có
Vậy
Chọn C.
Chọn đáp án A
Gọi H là trung điểm của AB suy ra SH ⊥ (ABC)
Trong (SAC) từ M dựng MN // AC , gọi K là hình chiếu của H trên BN
Ta có AC ⊥ (SAB) mà MN //AC ⇒ MN ⊥ (SAB)
Vì (BMN) // AC suy ra khoảng cách giữa hai đường AC và BM là
Đáp án là D.
Gọi I là điểm thuộc SA sao cho S I S A = 1 3 ⇒ I M // A C .
Gọi H là trung điểm của .AB S A B ⊥ A B C S A B ∩ A B C = A B S H ⊥ A B ⇒ S H ⊥ A B C
A C ⊥ A B A C ⊥ S H ⇒ A C ⊥ S A B ⇒ I M ⊥ S A B ⇒ I M ⊥ B I ⇒ Δ B I M
V S B A M V S B A C = S M S C = 1 3 ⇒ V S B A M = 1 3 V S B A C = 1 3 . 1 3 S H . S △ A B C = 1 9 . 4 3 2 1 2 A B . A C = 4 3 9 A C
V A B I M V A B S M = A I A S = 2 3 ⇒ V A B I M = 2 3 V A B S M = 2 3 . 4 3 9 A C = 8 3 27 A C
B I 2 = A B 2 + A I 2 − 2 A B . A I . c os 60 0 = 4 2 + 8 3 2 − 2.4. 8 3 . c os 60 0 = 112 9 ⇒ B I = 4 7 3
S Δ B I M = 1 2 B I . I M = 1 2 . 4 7 3 . 1 3 A C = 2 7 9 A C
V A B I M = 1 3 S △ B I M . d A , B I M ⇒ d A , B I M = 3 V A B I M S △ B I M = 3. 8 3 27 A C 2 7 9 A C = 4 21 7