K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

a) (x + 1)2 + 2016 có GTNN

(x + 1)2 có GTNN

(x + 1)2 \(\ge\) 0 

(x + 1)2 = 0

x + 1 = 0

x = 0 - 1 = -1

Vậy GTNN của M = 2016 khi x = -1 

b) N = 25 + |5x + 10| có GTNN

|5x + 10| có GTNN

|5x + 10| \(\ge\) 0

|5x + 10| = 0

5x + 10 = 0

5x = -10

x = -2

Vậy GTNN của N = 25 khi x = -2 

4 tháng 1 2016

mọi người giúp mình chút, đang cần gấp

Ta luôn có \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)  và  \(\left|x-y\right|=\left|y-x\right|\)

\(\Rightarrow\left|x-2\right|=\left|2-x\right|;\left|x-4\right|=\left|4-x\right|;...;\left|x-8\right|=\left|8-x\right|;\left|x-10\right|=\left|10-x\right|\)

\(\Rightarrow A=\left|x-1\right|+\left|2-x\right|+\left|x+3\right|+\left|4-x\right|+...+\left|x-9\right|+\left|10-x\right|\)

\(\Rightarrow A\ge\left|x-1+2-x+x-3+4-x+...+x-9+10-x\right|\)

\(=\left|\left(x-x+x-x+x-x+...+x-x\right)+\left(2-1\right)+\left(4-3\right)+...+\left(10-9\right)\right|\)

\(=\left|0+1+1+1+1+1\right|\)

\(=5\)

\(\Rightarrow A\ge5\)

\(\Rightarrow\) GTNN của A = 5 tại \(\left(x-1\right)\left(2-x\right)\left(x-3\right)...\left(x-10\right)\ge0\)

 

 

 

Ta có : \(\left|x+2\right|+5\ge5\forall x\)

Nên : \(\frac{1}{\left|x+2\right|+5}\le\frac{1}{5}\)

<=> \(\frac{10}{\left|x+2\right|+5}\le\frac{10}{5}=2\)

Vậy Amax = 2 khi x = -2

25 tháng 9 2018

gọi ý:

a,b biến đổi làm sao để:

a) áp dụng:  \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

b) áp dụng:  \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

c) Đánh giá:  \(\left|x-2015\right|^{2015}\ge0\)

                     \(\left(y-2016\right)^{2016}\ge0\)

=>  \(C\ge1\)khi  \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)

25 tháng 9 2018

a ) A = | x - 5 | - | x - 7 |

Nhận xét :

| x - 5 | - | x - 7 | < | x - 5 - x + 7 |

=> A < | 2 |

=> A < 2

Dấu "=" xảy ra khi : ( x - 5  ) ( x - 7 ) > 0 

                            TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)

                                 => \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)

                                    => x > 7

                             TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)

                                   => \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)

                                      => x < 5

Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7

b ) B = | 125 - x | + | x - 65 |

Ta có : 

| 125 - x | + | x - 65 | > | 125 - x + x - 65 |

=> B > | 60 |

=> B > 60

Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0

TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)

=> 65 < x < 125

TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)

=> 125 < x < 65 ( vô lí )

Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125

c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1

Nhận xét :

| x - 2015 |2015 > 0 với mọi x

( y - 2016 )2016 > 0 với mọi x

=> | x - 2015 |2015 + ( y - 2016 )2016 > 0 

=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1 

=> C > 1

Dấu "=" xảy ra khi : x - 2015 = 0

                               và y - 2016 = 0

=> x = 2015

      y = 2016

Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016

14 tháng 12 2015

5

tích với nha

 

14 tháng 12 2015

ta có 12015+22015+....+20142014+20152015

=>12015+22015+.....+20142015+20152015-2014

(1+2+3+4+....+2014+2015)2015-2014

=20311202015-2014 mà 20311202015 có tận cùng bằng 0 mà

20311202015-2014=......6

suy ra tổng đó có tận cùng là 6