tim x thuoc Z:
a, ( x - 1 ) . ( x - 4 ) > 0
b, ( x +1 ) . ( x + 5 ) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
hay \(x\in\left\{0;-1\right\}\)
a) (x-1).(x+2) < 0
TH1: x - 1< 0
x < 1
TH2: x + 2 < 0
x < -2
b) ( x +3).(x-5) > 0
TH1: x + 3 > 0
x> -3
TH2: x - 5 > 0
x > 5
KL: x > 5
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
\(\left(x+1\right)\left(x+2\right)< 0\)
Mà x+1 < x+2
\(\Rightarrow\begin{cases}x+1< 0\\x+2>0\end{cases}\)
\(\Rightarrow\begin{cases}x>1\\x< 2\end{cases}\)
\(\Rightarrow x\in\varnothing\)
b)
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
(+) Với \(\left(x-2\right);\left(x+\frac{2}{3}\right)\) cùng dương
\(\Rightarrow\begin{cases}x+2>0\\x+\frac{2}{3}>0\end{cases}\)
\(\Rightarrow\begin{cases}x>-2\\x>-\frac{2}{3}\end{cases}\)
=> x > - 2
(+) Với \(\left(x-2\right);\left(x+\frac{2}{3}\right)\) cùng âm
\(\Rightarrow\begin{cases}x+2< 0\\x+\frac{2}{3}< 0\end{cases}\)
\(\Rightarrow\begin{cases}x< -2\\x< -\frac{2}{3}\end{cases}\)
=> x < - 2
Vậy x>2 ; x< - 2
a ) \(\left(x+1\right).\left(x-2\right)< 0\)
\(=x.\left(x-2\right)+1.\left(x-2\right)< 0\)
\(=x.\left(x-2\right)+\left(x-2\right)< 0\)
\(\Rightarrow x\in Z\)
\(\Rightarrow x>2\)
b ) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(=x.\left(x+\frac{2}{3}\right)-2.\left(x+\frac{2}{3}\right)\)
\(\Rightarrow\left(x+\frac{2}{3}\right)\in\)số nguyên
Nên \(x\in\) phấn số
a/ Áp dụng tính chất phân phối ta được:
\(\left(x+1\right)\left(x+2\right)\)
\(=x^2+x+2x+2\)
\(=x^2+2x+1^2+x+1\)
\(=\left(x+1\right)^2+x+1\)
Mà \(x< \left(x+1\right)^2\)
\(\Rightarrow\left(x+1\right)^2+x+1>0\)
=> Biểu thức trên lớn hơn 0
=> Không có kết quả (Sai đề)
b/ Áp dụng tính chất phân phối ta được:
\(\left(x-2\right)\left(x+\frac{2}{3}\right)\)
\(=x^2-2x+\frac{2}{3}x-\frac{4}{3}\)
\(=x^2-2x+1+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{1}{3}\left(2x-1\right)\)
Mà \(\left(x-1\right)^2\ge0\)
=> Để thỏa mãn đề bài cần \(\frac{1}{3}\left(2x-1\right)>0\)
=> \(2x>1\Rightarrow x>\frac{1}{2}\)
a ) \(\left(x+1\right).\left(x+2\right)< 0\)
\(=x.\left(x+2\right)+1.\left(x+2\right)< 0\)
\(=x.\left(x-2\right)+\left(x+2\right)< 0\)
\(\Rightarrow x\in Z\)
\(\Rightarrow x>2\)
a) x2 - 7x + 16
= (x2 - 2x\(\frac{7}{2}\)+ \(\frac{49}{4}\)) + \(\frac{15}{4}\)
= (x - \(\frac{7}{2}\))2 + \(\frac{15}{4}\)> 0
b) 3x2 - 3x + 1
= [\(\left(\sqrt{3x^2}\right)^2\)- 2.\(\sqrt{3x^2}\).\(\frac{\sqrt{3}}{2}\)+ \(\frac{3}{4}\)] + \(\frac{1}{4}\)
= (\(\sqrt{3x^2}\)- \(\frac{\sqrt{3}}{2}\))2 + \(\frac{1}{4}\)> 0
c) -x2 + 3x - 5
= -(x2 - 3x + 5)
= -(x2 - 2x\(\frac{3}{2}\)+ \(\frac{9}{4}\)+\(\frac{11}{4}\))
= -[(x - \(\frac{3}{2}\))2 + \(\frac{11}{4}\)] < 0
d) Câu này sai đề rồi bạn ơi
Câu 1:
a)|x|=2,1
Suy ra:\(x=\frac{21}{10};-\frac{21}{10}\)
b)|x|=1
|x|=\(\frac{2}{5}\)
TH1:x có dạng \(\frac{a}{a};-\frac{a}{a}\)(a thuộc mọi điều kiện)
TH2:\(x=\frac{2}{5};-\frac{2}{5}\)
c)|x|=\(\frac{17}{9}\);x<0
TH1:\(x=\frac{17}{9};-\frac{17}{9}\)
TH2:Vì ko có giá trị tuyệt đối nào nhỏ hơn ko
Suy ra x thuộc tập rỗng
d)|x|=0,35 và x>0
TH1:\(x=\frac{7}{20};-\frac{7}{20}\)
TH2:Vì x>0 suy ra x thuộc mọi điều kiền (trừ số 0)
Câu 2:
a)|x-1,7|=2,3
Suy ra:
TH1:x-1,7=2,3
x=4
TH2:x-1,7=-2,3
x=-0,6
Vậy x=4;-0,6
b)\(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
TH1:\(x+\frac{3}{4}=\frac{1}{3}\)
\(x=-\frac{5}{12}\)
TH2:\(x+\frac{3}{4}=-\frac{1}{3}\)
\(x=-\frac{13}{12}\)
Vậy \(x=-\frac{5}{12}\);\(x=-\frac{13}{12}\)
a.x=0 và x>5
b.x<-1