K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Đáp án đúng : B

16 tháng 12 2021

Để hai đồ thi có điểm chung thì 

\(-2x^2-2x+m+3=0\) có nghiệm

\(\Leftrightarrow4-4\cdot\left(-2\right)\left(m+3\right)>=0\)

\(\Leftrightarrow4+8m+24>=0\)

hay m>=-7/4

AH
Akai Haruma
Giáo viên
14 tháng 2 2017

Lời giải:

Đồ thị hàm số \(y=-x^4+2(m+2)x^2-(4+m)\) không có điểm chung với trục hoành nghĩa là phương trình \(x^4-2(m+2)x^2+(m+4)= 0\) vô nghiệm

Đặt \(x^2=t\). Khi đó ta cần tìm $m$ nguyên sao cho \(t^2-2(m+2)t+(m+4)=0(1)\) vô nghiệm

Sẽ có hai kiểu xảy ra:

Kiểu 1: \((1)\)\(\Delta'=(m+2)^2-(m+4)=m^2+3m<0\Leftrightarrow -3< m<0\)

\(m\in\mathbb{Z}\Rightarrow m\in \left \{ -1,-2 \right \}\)

Kiểu 2: \((1)\) có nghiệm nhưng hai nghiệm đó là hai nghiệm âm( Kết hợp với \(t\geq 0\) sẽ suy ra mâu thuẫn, phương trình vô nghiệm)

Trước tiên \(\Delta'=m^2+3m\geq 0\Rightarrow \) \(\left[\begin{matrix}m\ge0\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{\begin{matrix} t_1+t_2=2(m+2)<0 \\ t_1t_2=m+4> 0\end{matrix}\right.\Rightarrow -4< m<-2\Rightarrow m=-3\)

Vậy \(m\in \left \{-1,-2,-3\right\}\)

14 tháng 2 2019

Chọn C.

17 tháng 7 2018

Đáp án C

Đồ thị hàm số đã cho có 5 điểm cực trị khi và chỉ khi phương trình y’ = 0 có 5 nghiệm phân biệt và y’ đổi dấu qua 5 nghiệm đó, điều này tương đương với   x 3 - 3 x 2 + m có ba nghiệm phân biệt khác 0 và 2 

26 tháng 6 2017



16 tháng 1 2017

Đáp án D

13 tháng 5 2019

Đáp án B.

• Trường hợp  m = 0

f x = − x 2 + 1  có đồ thị là parabol, có đỉnh I(0;-1).

Đồ thị hàm số đã cho có một điểm cực đại là I thuộc trục tung.

Do đó m = 0  thoả yêu cầu bài toán.

  Trường hợp  m ≠ 0

  f ' x = 4 m x 3 − 2 m + 1 x

f ' x = 0 ⇔ x = 0 ∨ x 2 = m + 1 2 m

+ Nếu − 1 ≤ m < 0  thì f ' ( x ) = 0  có nghiệm x = 0  ( y = m + 1  )

 

Đồ thị hàm số có một điểm cực đại (0;m+1) thuộc trục toạ độ.

+ Nếu m < − 1 ∨ m > 0  thì f ' ( x ) = 0  có ba nghiệm phân biệt

x = 0    y = m + 1 x = m + 1 2 m      ( y = 3 m 2 + 2 m − 1 4 m ) x = − m + 1 2 m     ( y = 3 m 2 + 2 m − 1 4 m )

Khi đó đồ thị hàm số có các điểm cực trị thuộc các trục toạ độ khi và chỉ khi 3 m 2 + 2 m − 1 = 0 ⇔ m = − 1 ∨ m = 1 3 . Nhận  m = 1 3