Tìm hai số tự nhiên a và b (a > b) có tổng bằng 224, biết rằng ƯCLN của chúng bằng 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do ƯCLN của a và b bằng 18 nên ta đặt a = 18a', b = 18b', ƯCLN (a', b') = 1 và a'; b' ∈ N..
Vì a > b nên a’ > b’
Ta có: a.b = 1944 nên 18a'. 18b' = 1944
a'. b' = 1944 : (18.18) = 6.
Do a' > b' và ƯCLN (a', b') = 1 nên
a' | 6 | 3 |
b' | 1 | 2 |
Suy ra
a | 108 | 54 |
b | 6 | 36 |
câu này mình vừa làm lúc nãy
UCLN(a;b)=12
=> a=12m;b=12n UCLN(m;n)=1
ta co a+b=60
=> 12m+12n=60
=> m+n=5
vi UCLN(m;n)=1
=> (m;n)=(1;4);(2;3);(3;2);(4;1)
=> (a;b)=(12;48);(24;36);(36;24);(48;12)
Giải : Gọi a và b là hai số cần tìm , d là ƯCLN ( a , b ).
ƯCLN ( a , b ) = d \(\Leftrightarrow\) a = da'
b = db'
( a' , b' ) = 1
BCNN ( a , b ) = a . b / ƯCLN ( a , b ) = da' . db' / d = da' b'.
Theo đề bài : BCNN ( a , b ) + ƯCLN ( a , b ) = 19
nên da' b' + d = 19
suy ra d( a' b' + 1 ) = 19
Do đó a' b' + 1 là ước của 19 , và a' b' + 1\(\ge\) 2.
Giả sử a \(\ge\) b thì a' \(\ge\) b' . Ta được :
d | a' b' + 1 | a' . b' |
1 | 19 | 18 = 2 . 32 |
\(\Leftrightarrow\)
a' | b' | a | b |
18 | 1 | 18 | 1 |
9 | 2 | 9 | 2 |
Đáp số : 18 và 1 ; 9 và 2.
Hiệu hai số là:
20*1+1=21
Số thứ 1 là:
[2009+21]:2=1015
Số thứ hai là:
[2009-21]:2=994
Đáp số:số thứ nhất là 1015 ; số thứ hai là: 994
994 cá chắc 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000%
Đặt a = 18a' ; b = 18b' ; ƯCLN ( a' ; b' ) = 1
Ta có :
18a' . 18b' = 1944
a' . b' = 1944 : ( 18 . 18 ) = 6
Do a' > b' và ƯCLN ( a' ; b' ) = 1 nên
\(\Rightarrow\):
Vậy : a = 108 ; 6
b = 54 ; 36
Đặt a = 28a', b = 28b', ƯCLN (a'; b') = 1 và a'; b' ∈ N.
Do a > b nên a’ > b’
Ta có a + b = 224 nên 28a' + 28b' = 224
28(a' + b') = 224
a' + b' = 224 : 28 = 8.
Do a' > b' và ƯCLN (a', b') = 1 nên
Suy ra