tìm 3 số x,y,z sao cho : zxy=x+y+z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow x=3k;y=5k;z=7k\)
\(xy+yz+zx=3k.5k+5k.7k+7k.3k=k^2\left(15+35+21\right)=71k^2;xyz=3k.5k.7k=105k^3\)
Ta có : \(xyz\left(xz+yz+xy+xz+yz+xy\right)=477120\)
\(\Rightarrow xyz\left(xz+yz+xy\right)=238560\)\(\Rightarrow105k^3.71k^2=238560\Rightarrow k^5=32=2^5\Rightarrow k=2\)
Vậy : x= 6 ; y = 10 ; z = 14
Từ :
\(x^3+y^3+z^3=x+y+z+2017\) \(\implies\) \(\left(x^3-x\right).\left(y^3-y\right).\left(z^3-z\right)=2017\left(1\right)\)
Chứng minh được :\(x^3-x=x.\left(x-1\right).\left(x+1\right)\)
\(y^3-y=y.\left(y-1\right).\left(y+1\right)\)
\(z^3-1=y.\left(y-1\right).\left(y+1\right)\)
Vì x, y, z là các số nguyên nên
\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3
Do đó vế trái của (1) luôn chia hết cho 3 mà 2017 không chia hết cho 3
Vậy không có số nguyên x,y,z nào thỏa mãn ycbt
z=1;x=2;y=3
x=1;y=2;z=3
x=3;z=2;y=1