K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow x=3k;y=5k;z=7k\)

\(xy+yz+zx=3k.5k+5k.7k+7k.3k=k^2\left(15+35+21\right)=71k^2;xyz=3k.5k.7k=105k^3\)

Ta có :  \(xyz\left(xz+yz+xy+xz+yz+xy\right)=477120\)

\(\Rightarrow xyz\left(xz+yz+xy\right)=238560\)\(\Rightarrow105k^3.71k^2=238560\Rightarrow k^5=32=2^5\Rightarrow k=2\)

Vậy : x= 6 ; y = 10 ; z = 14

30 tháng 12 2020

Ta có: \(2\left(x+y+z\right)=xyz\)

\(\Rightarrow1=\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}\)

G/s \(x\ge y\ge z\ge1\) khi đó:

\(1=2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\le\frac{3}{z^2}\Rightarrow z^2\le3\Rightarrow z=1\)

Thay vào: \(2x+2y+2=xy\)

\(\Leftrightarrow\left(xy-2x\right)-\left(2y-4\right)=6\)

\(\Leftrightarrow\left(x-2\right)\left(y-2\right)=6\)

Ta có: \(\hept{\begin{cases}x-2\ge-1\\y-2\ge-1\end{cases}}\) nên ta có các TH sau:

TH1: \(\hept{\begin{cases}x-2=6\\y-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)

TH2: \(\hept{\begin{cases}x-2=3\\y-2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Vậy \(\left(x,y,z\right)\in\left\{\left(8,3,1\right);\left(5,4,1\right)\right\}\) và 2 hoán vị

10 tháng 8 2019

Đat:\(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=k\) 

\(\Rightarrow x-\frac{1}{y}=\frac{1}{6}k;y-\frac{1}{z}=\frac{1}{3}k;z-\frac{1}{x}=\frac{1}{2}k\) 

\(\Rightarrow\left(x-\frac{1}{y}\right)\left(y-\frac{1}{z}\right)\left(z-\frac{1}{x}\right)=\left(xyz-\frac{1}{xyz}\right)-\left(x-\frac{1}{y}\right)-\left(y-\frac{1}{z}\right)-\left(z-\frac{1}{x}\right)=0=\frac{k^3}{36}\)

 \(\Rightarrow k=0\Rightarrow xy=yz=zx=1\Rightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\left(giaipt\right)\)

30 tháng 12 2020

Đặt \(2z=a>0\)

Khi đó: \(\frac{1}{2}xya=x+y+a\)

\(\Rightarrow\frac{1}{2}=\frac{1}{xy}+\frac{1}{xa}+\frac{1}{ya}\)

Vì vai trò của 3 biến x,y,a là như nhau nên không mất tổng quát g/s: \(1\le x\le y\le a\)

Khi đó \(\frac{1}{2}=\frac{1}{xy}+\frac{1}{xa}+\frac{1}{ya}\le\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}=\frac{3}{x^2}\)

\(\Rightarrow x^2\le6\Rightarrow x\in\left\{1;2\right\}\)

Nếu x = 1 : \(yz=1+y+2z\)

\(\Leftrightarrow\left(yz-y\right)-\left(2z-2\right)=3\)

\(\Leftrightarrow\left(y-2\right)\left(z-1\right)=3\)

Xét PT ước nguyên dương khá dễ

Tương tự nếu x = 2 : 

\(2yz=2+y+2z\)

\(\Leftrightarrow\left(2yz-y\right)-\left(2z-1\right)=3\)

\(\Leftrightarrow\left(2z-1\right)\left(y-1\right)=3\)

Đến đây thì mình nghĩ chắc bạn cũng có thể tự giải được rồi!

26 tháng 10 2016

ta có ........= x-1/3 ........ ( đảo ngược  lại)  =k

=> x-1 =3k=> x = 3k+1

y-2 = 4k=> y =4k+2

z-3=5k=> z = 5k+3

=> xyz = 3k+1. 4k+2.5k+3= 192 .  (1+2+3) =.....

=> tự tính nha bn

9 tháng 8 2020

Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\) ( đảo ngược )

\(\Rightarrow x-1=3k;y-2=4k;z-3=5k\)

\(\Rightarrow x=3k+1;y=4k+2;z=5k+3\)

\(\Rightarrow xyz=192\Leftrightarrow\left(3k+1\right)\left(4k+2\right)\left(5k+3\right)=192\Leftrightarrow k=1\)

Suy ra : 

+) \(x-1=3k\Leftrightarrow x-1=3\Leftrightarrow x=4\)

+) \(y-2=4k\Leftrightarrow y-2=4\Leftrightarrow y=6\)

+) \(z-3=5k\Leftrightarrow z-3=5\Leftrightarrow z=8\)

Vậy x = 4 ; y = 6 ; z = 8