Giả sử α và β là hai nghiệm của phương trình 3 + 2 log 2 x = log 2 ( 14 x - 3 ) . Khẳng định nào sau đây là đúng ?
A. α = -4
B. log 2 α = - 2
C. α = 3 2
D. α = 3 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)
=>B
tham khảo
a)Chia cả hai vế của phương trình cho \(2\), ta được:
\(log_2x=-\dfrac{3}{2}\)
Vậy \(log_2x=-\dfrac{3}{2}\)
b) Áp dụng định nghĩa của logarit, ta có:
\(log_2x=-\dfrac{3}{2}\Leftrightarrow2^{-\dfrac{3}{2}}=x\)
Vậy \(x=\dfrac{\sqrt{2}}{4}\)
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng
|x – 1| = 0 ó x – 1 = 0 ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.
Vậy có 1 khẳng định đúng
Đáp án cần chọn là: B
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4
Nên x = 4 là nghiệm của phương trình |x – 3| = 1
Khẳng định đúng là (2) và (3)
Đáp án cần chọn là: B
Ta có: Phương trình (1) ⇔ x − 2 = 0 x = 3 ⇔ x = 2 x = 3
Do đó, tập nghiệm của phương trình (1) là S 1 = 2 ; 3
Phương trình (2) ⇔ x − 2 ≠ 0 x = 3 ⇔ x = 3
Do đó, tập nghiệm của phương trình (2) là S 2 = 3
- Vì S 2 ⊂ S 1 nên phương trình (1) là hệ quả của phương trình (2).
Đáp án cần chọn là: A
Với hai góc α và β mà α + β = 90o. Ta có:
sin α = cos α ; cos α = sin α
tan α = cot α ; cot α = tan α
Đáp án cần chọn là: B