Xác định các hệ số a và b để đồ thị của hàm số y = ax + b đi qua các điểm sau
A(2/3; -2) và B(0; 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số y = ax + b đi qua điểm M(1; 7).
\(\Rightarrow7=a+b.\left(1\right)\)
Hàm số y = ax + b đi qua điểm N(0; 3).
\(\Rightarrow3=b.\left(2\right)\)
Thay (2) vào (1), ta có:
\(7=a+3.\Leftrightarrow a=4.\)
Vậy các hệ số a và b là 4 và 3.
a: Vì (d) có hệ số góc là -2 nên a=-2
=>y=-2x+b
Thay x=0 và y=0 vào (d), ta được:
b-2*0=0
=>b=0
b: Vì (d) đi qua A(2;0) và B(0;-3) nên ta co:
2a+b=0 và 0a+b=-3
=>b=-3; 2a=-b=3
=>a=3/2; b=-3
Đồ thị hàm số y = ax + b đi qua M(1;7) và N(0;3) nên tọa độ của M, N thỏa mãn phương trình .
Ta có a + b = 7 b = 3 ⇒ a = 4 b = 3 .
Vậy đáp án là B.
a, Đths đi qua \(A\left(-1;-3\right)\Leftrightarrow-3=-a+b\left(1\right)\)
Đths đi qua \(B\left(2;3\right)\Leftrightarrow3=2a+b\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Vậy đths là \(y=2a-1\)
b, Đths đi qua \(M\left(-3;4\right)\Leftrightarrow4=-3a+b\left(1\right)\)
Đths song song với Ox \(\Leftrightarrow y=b=4\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrow a=0\)
Vậy đths là \(y=4\)
Đáp án B
Do đồ thị hàm số đã cho đi qua hai điểm A và B nên ta có:
A(15; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 15.a + b ⇒ b = –3 – 15.a (1)
B (21; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 21.a + b ⇒ b = –3 – 21.a (2)
Từ (1) và (2) suy ra –3 – 15.a = –3 – 21.a ⇒ a = 0 ⇒ b = –3.
Vậy a = 0; b = –3.
Vì đồ thị đi qua A(2/3; -2) nên ta có phương trình 2a/3 + b = -2
Tương tự, dựa vào tọa độ của B(0 ;1) ta có 0 + b = 1.
Vậy, ta có hệ phương trình.