Tập nghiệm của phương trình cos 3 x + sin 3 x = sin x + cos x là:
A. - π 4 + k π , k π 2 ; k ∈ ℤ
B. - π 4 + k 2 π , kπ ; k ∈ ℤ
C. - π 4 + k π ; k ∈ ℤ
D. k π 2 ; k ∈ ℤ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)
Chọn B
sin
π
x
=
cos
π
3
+
π
x
⇔
cos
π
2
−
π
x
=
cos
π
3
+
π
x
⇔
π
3
+
π
x
=
π
2
−
π
x
+
k
2
π
π
3
+
π
x
=
−
π
2
+
π
x
+
k
2
π
(
l
)
⇔
2
π
x
=
π
6
+
k
2
π
⇔ x = 1 12 + k
Chọn C
Ta có: nên (1) và (2) có nghiệm.
Cách 1:
Xét: nên (3) vô nghiệm.
Cách 2:
Điều kiện có nghiệm của phương trình: sin x + cos x = 2 là:
(vô lý) nên (3) vô nghiệm.
Cách 3:
Vì
nên (3) vô nghiệm.
Chọn A
cos 3 x + sin 3 x = sin x + cos x
⇔ cos x + sin x cos 2 x − cos x . sin x + sin 2 x − sin x + cos x = 0
⇔ cos x + sin x 1 − cos x . sin x − sin x + cos x = 0
⇔ sin x + cos x 1 − cos x . sin x − 1 = 0
⇔ sin x + cos x − cos x . sin x = 0
⇔ sin x + cos x = 0 − cos x . sin x = 0
⇔ sin x . 1 2 + cos x . 1 2 = 0 sin 2 x = 0
⇔ sin π 4 + x = 0 sin 2 x = 0
⇔ π 4 + x = k π 2 x = k π
⇔ x = − π 4 + k π x = k π 2