K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

 Không có giá trị nào của m thỏa mãn điều kiện này.

29 tháng 6 2018

5 tháng 4 2017

a) điều kiện cần và đủ \(\Delta< 0\Rightarrow\left(m+2\right)^2-8\left(m^2-m-1\right)< 0\)

\(\Leftrightarrow-7m^2+12m+12< 0\) \(\Rightarrow\left[{}\begin{matrix}m< \dfrac{6-2\sqrt{30}}{7}\\m>\dfrac{6+2\sqrt{30}}{7}\end{matrix}\right.\)

b) ????

9 tháng 5 2017

b) Xét \(m^2-m-1=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{5}}{2}\\m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Với \(m=\dfrac{1+\sqrt{5}}{2}\) thay vào phương trình ta có:\(-\sqrt{5}x+1\)
Do \(-\sqrt{5}x+1>0\Leftrightarrow x< \dfrac{1}{\sqrt{5}}\) vì vậy \(m=\dfrac{1+\sqrt{5}}{2}\) không thỏa mãn.
Tương tự với \(m=\dfrac{1-\sqrt{5}}{2}\).
Xét \(m^2-m-1\ne0\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1+\sqrt{5}}{2}\\m\ne\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\).
\(\Delta=\left(2m-1\right)^2-4.\left(m^2-m-1\right)=5>0\).
Do vậy tam thức bậc hai luôn có hai nghiệm phân biệt nên dấu của tam thức sẽ phụ thuộc vào x.
Kết luận: Không có giá trị nào thỏa mãn.

3 tháng 4 2023

\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)

a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)

⇒ Phương trình có hai nghiệm phân biệt 

b, Để phương trình có hai nghiệm cùng dương thì : 

\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)

c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)

Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)

Kết luận ....

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Để tam thức bậc hai \({x^2} + (m + 1)x + 2m + 3 > 0\)với mọi \(x \in \mathbb{R}\)

Ta có: a = 1 >0 nên \(\Delta  < 0\)

\(\begin{array}{l} \Leftrightarrow {(m + 1)^2} - 4.(2m + 3) < 0\\ \Leftrightarrow {m^2} + 2m + 1 - 8m - 12 < 0\\ \Leftrightarrow {m^2} - 6m - 11 < 0\end{array}\)

Tam thức \(f(m) = {m^2} - 6m - 11\) có \(\Delta ' = 20 > 0\) nên f(x) có 2 nghiệm phân biệt \({m_1} =  3+\sqrt{20}; {m_2} = 3-\sqrt{20}\)

Khi đó 

\(  3+\sqrt{20} < m < 3-\sqrt{20}\)

Vậy \(  3+\sqrt{20} < m < 3-\sqrt{20}\)