K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

24 tháng 12 2017

15 tháng 2 2018

Đáp án là C

29 tháng 10 2017

Đáp án C

Bài 2: 

a: \(\sin\alpha=\sqrt{1-\left(\dfrac{2}{5}\right)^2}=\dfrac{\sqrt{21}}{5}\)

\(\tan\alpha=\dfrac{\sqrt{21}}{5}:\dfrac{2}{5}=\dfrac{\sqrt{21}}{2}\)

\(\cot\alpha=\dfrac{2}{\sqrt{21}}=\dfrac{2\sqrt{21}}{21}\)

b: Đặt \(\cos\alpha=a;\sin\alpha=b\)

Theo đề, ta có: a-b=1/5

=>a=b+1/5

Ta có: \(a^2+b^2=1\)

\(\Leftrightarrow b^2+\dfrac{2}{5}b+\dfrac{1}{25}+b^2-1=0\)

\(\Leftrightarrow2b^2+\dfrac{2}{5}b-\dfrac{24}{25}=0\)

\(\Leftrightarrow10b^2+2b-24=0\)

=>b=4/5

=>a=3/5

\(\cot\alpha=\dfrac{a}{b}=\dfrac{3}{4}\)

a: \(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)

\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)(đúng)

b: Ta có: \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)

\(=\dfrac{4\cdot\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)

=4

b: Xét ΔADC vuông tại D và ΔBEC vuông tại E có 

\(\widehat{C}\) chung

Do đó: ΔADC\(\sim\)ΔBEC