Cho hai tập hợp A = { a = 3 n | n ∈ ℕ * } , B = { b ∈ ℕ | 0 < b ≤ 9 } .
Khẳng định nào dưới đây là không đúng?
A. A ∩ B = { 3 ; 6 ; 9 }
B. B ⊂ A
C. 15 ∈ A ,15 ∉ B
D. 18 ∈ A ,9 ∈ A ,9 ∈ B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có A = a 5 3 . a 7 3 a 4 . a − 2 7 = a 5 3 . a 7 3 a 4 . a − 2 7 = a 5 3 + 7 3 a 4 − 2 7 = a 2 7
Suy ra m = 2 , n = 7. Do đó 2 m 2 + n = 15
Ghi chú: với m = 2 , n = 7. thì m 2 + n 2 = 53 , m 2 − n 2 = − 45 , 3 m 2 − 2 n = − 2
Đáp án D
Ta có: A = a 5 3 . a 7 3 a 4 . a − 2 7 = a 5 3 × a 7 3 a 4 × a − 2 7 = a 5 3 + 7 3 a 4 − 2 7 = a 4 a 26 7 = a 2 7 = a m n ⇒ m = 2 n = 7 . Vậy 2 m 2 + n = 15
Chọn D
Lời giải. Số tam giác tạo thành có 3 đỉnh là 3 đỉnh của đa giác là C n 3
Số tam giác tạo thành có đúng 2 cạnh là cạnh của đa giác là n
Số tam giác tạo thành có đúng 1 cạnh là cạnh của đa giác là n(n-4)
(điều kiện n ∈ ℕ v à n < 4 )
→ số tam giác tạo thành không có cạnh nào là cạnh của đa giác là
Theo giả thiết, ta có
⇔ n = 35 ( t h ỏ a m ã n ) n = 4 ( l o ạ i )
Ta có A = a = 3 n | n ∈ N * = 3 ; 6 ; 9 ; 12 ; ...
B = b ∈ N | 0 < b ≤ 9 = 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9
Ta thấy; 2 ∈ B ; 2 ∉ A nên B không thể là tập con của A.
Khẳng định B sai.
Đáp án B