K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

Đáp án D

Ta có:

Gọi I là trung điểm của SC. Theo định lí ba đường vuông góc ta có tam giác SAC vuông tại A, mà tam giác SBC vuông tại B nên I cách đều các đỉnh của hình chóp hay I là tâm mặt cầu ngoại tiếp hình chóp. Khi đó ta có bán kính: r = SC/2 = a

 

1 tháng 4 2017

Chọn B.

Phương pháp:

+ Gọi H là trung điểm BC. Ta chứng minh A H ⊥ A B C  và AH là trục đường tròn ngoại tiếp tam giác

SBC 

+ Suy ra tâm mặt cầu ngoại tiếp chóp S. ABC là giao của AH và đường trung trực cạnh AB.

+ Chỉ ra tam giác SBC vuông tại S từ đó tính SC theo định lý Pytago. 

Cách giải:

12 tháng 6 2019

Chọn B

26 tháng 3 2017

Đáp án B.

Dựng tam giác đều IAB (I và C cùng phía bờ AB).

Ta có:

Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.

Gọi M là trung điểm của SA.

Ta có:

 

23 tháng 5 2018

Dựng tam giác đều IAB (I và C cùng phía bờ AB). Ta có ∠ I B C = 120 ° - 60 ° = 60 ° và IB=BC nên DIBC đều, IA=IB=IC=a

Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.

Gọi M là trung điểm của SA.

15 tháng 11 2018

Đáp án D

Phương pháp giải:

Xác định tâm mặt cầu ngoại tiếp đi qua các đỉnh của khối chóp bằng phương pháp dựng hình, từ đó dựa vào tính toán xác định bán kính – thể tích mặt cầu.

Lời giải:

5 tháng 1 2020

23 tháng 5 2019

Đáp án A

 

14 tháng 5 2017

Đáp án C

Mặt cầu S(I,r) tiếp xúc với AB, SC lần lượt tại T, K. Khi đó ta có:

2r = IT + IK ≥ d(AB; SC) => r ≥ d(AB, SC)/2

Dựng hình bình hành ABDC, khi đó ta có ABDC là hình vuông cạnh a. Hạ BH vuông góc với SD tại H. Khi đó ta có BH (SCD).

Suy ra: d(SC; AB) = d(AB, (SCD)) = d(B; (SCD))

11 tháng 3 2019