Ta có: a+b=c+d và a.b+1=d.c chứng tỏ d=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b=c+d\Rightarrow a=c+d-b\)
\(\text{Ta có:}ab+1=cd\)
\(\Leftrightarrow\left(c+d-b\right)b+1=cd\)
\(\Leftrightarrow bc+bd-b^2-cd=-1\)
\(\Leftrightarrow c\left(b-d\right)-b\left(b-d\right)=-1\)
\(\Leftrightarrow\left(b-d\right)\left(c-b\right)=-1\)
\(\text{Vì }b,c,d\in Z\)
\(TH1:\left\{{}\begin{matrix}b-d=1\\c-b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d=b-1\\c=b-1\end{matrix}\right.\Rightarrow c=d\)
\(TH2:\left\{{}\begin{matrix}b-d=-1\\c-b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d=b+1\\c=b+1\end{matrix}\right.\Rightarrow d=c\)
\(\text{Vậy }d=c\)
a+b=c+d⇒a=c+d−ba+b=c+d⇒a=c+d−b
Ta có:ab+1=cdTa có:ab+1=cd
⇔(c+d−b)b+1=cd⇔(c+d−b)b+1=cd
⇔bc+bd−b2−cd=−1⇔bc+bd−b2−cd=−1
⇔c(b−d)−b(b−d)=−1⇔c(b−d)−b(b−d)=−1
⇔(b−d)(c−b)=−1⇔(b−d)(c−b)=−1
Vì b,c,d∈ZVì b,c,d∈Z
TH1:{b−d=1c−b=−1⇒{d=b−1c=b−1⇒c=dTH1:{b−d=1c−b=−1⇒{d=b−1c=b−1⇒c=d
TH2:{b−d=−1c−b=1⇒{d=b+1c=b+1⇒d=cTH2:{b−d=−1c−b=1⇒{d=b+1c=b+1⇒d=c
Vậy d=c
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2};\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=\frac{c^2}{d^2}\\ \Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)